
Parallel Implementation of a
Method on the Experimental

* * G-\
Raphaele Herbin*

IBM Gnporatiun
Department 48B, MS 428
Neighborhood Road
Kingston, Nm York 12401

Multigrid
1CAP Supercomputer

Stephane Gerbi’

Ecole Nationale des Travaux Publics de I’Etat
Rue Maurice Audin
69120, Vaulx en Velin, France

and

Vijay Sonnad

IBM Corporation
Department 48B, MS 428
Neighborhood Road
Kingston, New York 12401

Transmitted by John Casti

ABSTRACT

A parallel multigrid method for the resolution of elliptic partial differential
equations has been implemented on the loosely Coupled Array of Processors system at
IBM Kingston, an experimental MIMD machine with communications occurring via

shared memories. We consider various smoothers, restrictions, and prolongations,
using multicolor ordering of the grid points. The parallelization is obtained by an
a priori decomposition of the finest grid; each step of the multigrid method is then

*Present address: Ecole Poly-technique Federale de Lausanne, GASOV/ASTRID, Lausanne,
1015, Switzerland.
‘Present address: Yale University, Computer Science Department, Box 2158, Yale Station, New
Haven, Conn. 06520.

APPLZED MATHEMATZCS AND COMPUTATZON 27281-312 (1988) 281

8 Elsevier Science Publishing Co., Inc., 1988
52 Vanderbilt Ave., New York, NY 10017 OOQ&3OO3/88/$03.50

R. HEBBIN, S. GERBI, AND V. SONNAD

parallelized, up to the direct solve on the coarse grid, which is done se+entially; data
communication via the shared memory occurs at the boundaries of the subregions
thus defined. We present the numerical results that we obtain for the parallel code,
along with the efficiencies according to the number of processors that we use. A finer
analysis of the parallel code is carried out by a precise timing of the various
procedures, leading to a number of conclusions as to the optimal way of parallelizing
the mukigrid method with this kind of approach.

I. INTRODUCTION

The solution of very large problems, such as 3D flmddynamics simula-
tions, generally requires more computing power than a standard sequential
computer can provide. Parallel computing appears to be a way of circumvent-
ing this limitation. Parallelizing efficient sequential numerical algorithms,
however, is not always possible and does not automatically lead to the best
parallel algorithm.

A very fast sequential method is the multigrid method. The convergence
speed does not deteriorate when the discretization is refined, whereas classi-
cal iterative methods slow down with finer mesh discretization. Our purpose
here is to find out whether this very fast sequential method can be efficiently
implemented on a parallel supercomputer such as the experimental 1CAP
system.

The parallel implementation of multigrid methods has been studied by
several authors, for different architectures (see [22] for a survey). In a
multigrid code, the unknowns arise from a sequence of nested grids, which
can create some difficulties for data communication in a mesh-connected
array of processors. In [6], Brandt studies the parallelization of the multigrid
method with one or more points of a particular grid assigned to one
processor, for a perfectly shuffled nearest-neighbor array. Chan and Schreiber
[9] consider large networks of simple processors with local communication. In
these parallel codes, processors are assigned to one grid only, and thus remain
idle during the computation on other grids. In [13] and [14], new versions of
mu&rid are introduced in order to allow simultaneous relaxation on all
grids. We also mention recent work by Frederickson and McBryan [27].

Our approach here is to divide the domain of definition into as many
subregions as the number of processors (up to 10 for the lCAP1 system), thus
dividing alI grids between processors. Data communication occurs at the
boundaries of each subregion from one processor to its neighbor and is done
via the shared bulk memory (see [lo] for a detailed description of the ICAP
system). Therefore, no processor is idle at any given step of our parallel

A Multigrid Method jTx Supercomputers !?I83

multigrid algorithm. This approach was previously taken for a parallel imple-
mentation of PDE solvers on the Denelcor HEP-1 [19] and on hypercubes

Wl~
One of the main features of the multigrid algorithm is that it requires a

“smoothing” step on each grid. The smoothing step consists of one or more
iterations of a linear iterative method (see e.g. [16]). This is the reason why
our starting point is the study of the parallelization of a linear iterative solver.
This also explains why we have chosen to parallelize the SOR method with
red-black ordering: it is indeed, as we shall see, very efficient as a smoother
for the muhigrid method.

In Section II, we present the basic multigrid concept and give the
fundamental algorithm; various possible smoothers are also presented. The
convergence results and the computational cost are outlined. In Section III,
we present some sequential tests that were carried out before parallelization;
the experimental ICAP system is described; the parallel implementation of
the multigrid method and the data flow analysis are studied. Parallel numeri-
cal results are finally presented in Section IV; a precise analysis of the parallel
efficiency of each of the components of the method is performed, leading to a
number of conclusions as to the parallelization of the method.

II. THE MULTIGRID METHOD’

11.1. Problem DejWtion and Notation

II. 1.1. The Continuous Boundu y- Value Problem. We consider here the
following second-order, positive definite self-adjoint Dirichlet problem:

Lu=f in a,
(11.1)

u=o on JQ,

where

2 a au
Lu=- C - aijz

i,j=l axi i i j

(11.2)

and Q is a polygonal domain of R2.

11.1.2. Finite-Di@mce Disretization. Let h be a real number. We
introduce L,, the discrete operator obtained by approximating L by the

284 R. HEFWN, S. GERBI, AND V. SONNAD

second-order Taylor’s formula (Spoint difference scheme) and the following
discrete problem:

L,u, = fh in a,,
(11.3)

u,, = 0 on 80,.

Let us consider as a model problem Poisson’s equation with homogeneous
Dir&let boundary condition on the unit square:

-Au=f in CI =]O,l[X]O,l[,
(11.4)

u=o on JC!.

The 5-point difference scheme leads to Equation (11.3), where the spatial
stencil can be represented as

L,= -““-;[-; 1; -;I. (11.5)

Eliminating the discrete boundary conditions leads to a 4point scheme at the
edges and to a 3point scheme at the comers.

lI.2. The Mu&grid Algorithm
For the m&&rid approach, one needs a sequence of grids (discretized

domains) numbered from I, (coarse grid) to 1 (fine grid): G!,O,. . . , Q,, with
respective mesh sizes hlo,. .., h,, where hi = (i)i+l. So we simply write

L,u,=f, ina,, (11.6)

where L, is the discrete operator taking into account the boundary condi-
tions.

The multigrid method can easily be described by a recursive program
[16,23], given below, where SF denotes v iterations of the smoother, which is
a linear iterative method; r is the restriction from a grid to the next coarser
one; d is the defect on this new grid (and thus the right-hand side for the
next smoothing step); and p is the prolongation from a grid to the next finer
one.

A Multigrid Method for Supercomputers 285

procedure MGM (1, u, f): integer 1; array u, f;
comment: I level of the fine grid, 1, level of the coarse grid, u = U{ is a

given iterate, u = u/+l is the result.
begin

if 1=10 then
u=L-’

10 f
else

begin integer j; array 0, d;
u = Syl(u, f)
d=r(f- L,u)
u=o
for j = 1 to y step 1 do MGM(Z - 1, u, d)
u=u+pu
u = S;p(u, f)

end
endif

end
Several restriction and prolongation operators have been proposed, accord-

ing to the type of equation and of discretization (see e.g. [16, 23, 51 for a
discretization with finite differences, and [16, 4, 181 for the finite-element
approach). For simplicity, we have restricted ourselves to the case of finite
differences, and we consider the 9 and 7-point prolongation operators and
the 9, 7-, and 5point restriction operators [26, 121.

We shall see in the next subsection that if red-black relaxation is used as a
smoother, the defect, d, = fi - L,u,, vanishes at all black points. Thus, if the
defect d I_ 1 = rd, is computed by the E&point restriction, it coincides with
irinjdl, where rini is the trivial restriction between 9, and 52,-r. That is the
reason why, in this case, it is also called the h&-injection. Note that this type
of restriction is a very good candidate for parallelization, since it is a
completely local process.

II.3. Smoothers and Smoothing Properties
The well-known damped Jacobi method is generally considered to be a

very easily parallelizable method, since within one iteration, each point is
computed independently from the others. The method may thus be parallel-
ized quite simply (see e.g. [22]). The convergence rate of the Jacobi method,
however, is not nearly as good as the SOR method, and in [l], for instance, its
parallelization is only considered for use as a preconditioner in a parallel
preconditioned conjugate-gradient method. However, we are not interested
in the convergence rate of the methods but in their smoothing properties.
The SOR method is a good candidate as a smoother, but it is inherently
sequential.

266 R. HERBIN, S. GEBBI, AND V. SONNAD

43,, 44blrck 45,, 461~‘ 47, 48b,mk 4%rd

36b*ck 37, 38,,, 3%d 40b,ack 41, 42bluk

I5d I&u 17, I8b,wk %d 2oblack 21red

8 black 9, 1ob,k l&-e, =black 13red 14bhck

FIG. 1. Red-black ordering for h = i (49 nodes).

ZZ.3.Z. The SOR Method with Red-Black ordering. We consider here a
way of parallelizing SOR by a reordering of the nodes, which leads to
independent steps when the system of linear equations arises from the
discretization of a partial differential equation. Let us start by considering the
model problem (II.4) and its discretization (11.3). We partition the grid points
by the classical red-black ordering, as shown in Figure 1. Using the lexico-
graphical (rowwise) ordering and assuming an odd number of nodes, we split
Q2,, the set of grid points, into two sets of nodes: the red nodes with odd
numbers, and the black nodes with even numbers. Let N be the total
number of nodes [N = (2’ - 1)2 for a grid of level I as defined in Section
11.21, and M = E(N/2) be th e number of black nodes. It is well known that
the 5point discretization (11.5) of the model problem (11.4) leads to the
following partitioned matrix form (see e.g. [WI):

[: J[ij= [i,J (11.7)

where VT=(u,,ug ,..., u,>~, Ub=(2(2,~q,...,~~-1)r, F,=(f,,f,P...Yf~)TY

FL,=(.&,.&,..., fN_#, 0, = (4/h2)ZM+1, D, = (4/h2)ZM, and E is an
(M + 1) X M matrix.

A Multigrid Method for !Supercomputers 287

The Gauss-Seidel iteration on the system (11.7) leads to

DUk+‘= -EUt+F,, , t
(11.8)

D&J;+ 1 = - ETU,k+’ + Fb.

The system (11.8), which defines the red-black relaxation, can be imple-
mented in parallel, since the red and black unknowns are completely decou-
pled. Of course, like the Gauss-Seidel method, the red-black relaxation
method can be accelerated by a relaxation parameter w.

Note that if the partial differential equation to be solved involves cross
derivatives, then the matrices D, and D, are no longer diagonal, so that the
unknowns U, and U, are now coupled. In this case, our method can easily be
generalized by using multicolor schemes which have been proposed for the
q-point and B-point finite-difference schemes, as well as for some finite-ele-
ment schemes [l, 2, 211.

X3.2. Smoothing P~qwrties of Linear iterative Methods. We are now
going to review the smoothing properties of a linear iterative method and in
particular the damped Jacobi method, the SOR method, and finally the
red-black relaxation.

The coarsegrid correction step as an iteration by itself is nonconvergent;
therefore, the crucial step when developing multigrid solvers is the design of
linear iterative methods with a high error-smoothing rate. Namely, the
question is how to reduce nonsmooth error components for as little computa-
tional work as possible. In the case of the model problems, the accuracy of
the methods can be measured precisely by local mode analysis [S, 231: for the
5point discretization (11.5) of the model problem (11.4), the algebraic error

uh - iih (where uh is the exact solution to the discrete problem and u”h is the
approximation computed by one step of the multigrid method) is a combina-
tion of Fourier components:

exp(isii)exp(i@sX)

for

These components can be separated into low and high frequencies; the
low-frequency Fourier components on the grid $, are also the Fourier
components on the grid Qs,,. The smoothing factor on the grid Q, is defined
by p(h) = max{ p(Bi, es, h)}, for (t$, 8,) defining a high frequency, where
p(8,, es, h) is the factor by which the amplitude of the Fourier component

288 R. HERBIN, S. GERBI, AND V. SONNAD

exp(iz3,x/h)exp(it9,y/h) is multiplied by a relaxation sweep. This is the
bound for the factor by which all high-frequency error components are
reduced, and of course we want p(h) < 1. In [23], Stiiben and Trottenberg
define also the uniform smoothing factor as

p*=max{p(h), h<f}.

For appropriate methods, smoothing factors are smaller than 0.5 (see e.g.

[I69 5, 24).
In Section 3 of [23], Stiiben and Trottenberg show that the smoothing

factor for the damped Jacobi iteration is /.L*, = max{]I- w/2],]I- 2w]}, so
that the optimal damping factor is o = $ and the optimal smoothing factor is
p*, = 0.6.

In the case of the SOR method with lexicographical ordering, the eigen-
functions of the iteration matrix are not known, thus preventing the use of
the Fourier mode analysis. However, using local mode analysis, Brandt (in
[5]) shows that, for the generally used relaxation parameter w = 1, i.e. the
Gauss-Seidel method, the optimal smoothing factor ~*~oa_~ is equal to 0.5;
the Gauss-Seidel method is therefore a better smoother than the damped
Jacobi method.

Finally, in [23] it is shown that the smoothing factor of the SOR method
with red-black ordering (SOR-RB) is optimal for w = l\(i.e. the Gauss-Seidel
method), and equal to ~*soR_aa = 0.250; it is therefore better than the two
previous ones. Moreover, the use of the SOR-RB method as a smoother
considerably reduces the computational cost of the MGM procedure, for the
following two reasons:

(i) It is well known that at each iteration of the red-black relaxation the
defect fi - L,u, vanishes at all the black points; thus in the multigrid method
we compute it only at the red points. Therefore, the computation of
r(L,u, - fi) requires less computational work than in the general case.

(ii) If we apply postsmoothing iterations, since the red-black relaxation
requires only the values of uk at the black points, we can compute uz + pu,_ 1
only at the black points, again reducing the computational work.

Additionally, we note that since the iteration MGM at levels k < 2 is
started with initial guess uk = 0, and since the smoothing steps are linear, the
first presmoothing step S(uk, fk) = S(0, fk) can be performed with a reduced
number of iterations.

These properties and the fact that the red-black relaxation can be easily
parallel&d have led us to use the red-black relaxation as the smoother of our
parallel multigrid method.

A Multigrid Method for Supercomputers 289

ZZ.4. Comergme Speed and Operation Count
Before we turn to the numerical implementation, we briefly outline the

convergence properties of the multigrid method. When the continuous prob-
lem is discretized by a finite-difference scheme, the convergence of multigrid
methods using various smoothers, restrictions, and prolongations is proved by
a local mode analysis. Stiiben and Trottenberg [23], Brandt [5], and Hackbusch
[16] have aheady proved a number of convergence results. We outline the

principal ones.

(1) The convergence of a multigrid method depends on the smoothing
property of the smoother used (the smaller p* is, the better the convergence
is), and on the coarse-grid correction operator (involving the restriction r and
the prolongation p).

(2) The energy norm of the multigrid iteration matrix can be bounded
independently of I and thus of h, but depends only on v = vi + v2. This result
is important because multigrid methods are the only methods for which the
convergence bound does not depend on h.

(3) The Euclidean norm of the multigrid iteration matrix is also bounded
independently of h, but depends on the couple (vi, vs).

The convergence of multigrid methods in the case of discretization by a
finite-element method has also been investigated. For more details about this
case, we refer to [4, 181.

Let us now turn to the computational work that is required in the
multigrid method. Typically, the number of arithmetic operations needed for
one multigrid iteration is proportional to the number of grid points of the
finest grid, Nl. In this sense, the multigrid method can be looked upon as the
optimal method for the resolution of a linear system. The constant of
proportionality depends on the type of cycle, i.e. y, the type of coarsening,
and the multigrid components: smoother, restriction, and prolongation.

Stiiben and Trotter&erg [23] and Hackbusch [Xi] showed that the compu-
tational work W may be expressed as

W-- l (1-1
vc, + Cd + C,)N,,

where

C,, C,, and C, are respectively the computational work by grid points on
the grid Q2, of the pm- and postsmoothing steps, the computation of the

290 R. HERBIN, S. GERBI, AND V. SONNAD

defect and its restriction, the prolongation of the correction, and its addition
to the previous approximation;

n = y/ch, where ch expresses the type of coarsening, i.e. satisfies Nk -
chNk_ i; for a twodimensional problem with standard coarsening, ch = 4.

Let us now present the computational work needed in the particular case
where red-black relaxation is used as the smoother, the restriction is the
5point operator, and the prolongation is the 7-point operator. Using proper-
ties (i) and (ii) of Section 11.3.2, we obtain

c,= x: 1 0.5,

+/-: 1.0,

c,= xi i
1.0,

+/-: 3.0.

So we finally obtain, for the V-cycle, i.e. y = 1, and the standard coarsening of
the model problem (11.4),

W-;N,
x: (rl+ra)+I,

+/-: 3(pi + ~a) +2.25.

III. NUMERICAL IMPLEMENTATION OF THE PARALLEL
MULTIGRID METHOD

ZZZ.l. Sequential Tests: Choice of Operators and Parameters
We first implemented sequentially five different multigrid methods to

solve the discrete model problem (11.3)-(11.5), which are all of the Vcycle
type, i.e. y = 1, in order to choose the optimal operators (smoother, restric-
tion, and prolongation) as well as the optimal parameters vi, ~a in our parallel
multigrid method; we recall that the most easily parallelizable smoothers are
the damped Jacobi method and the red-black relaxation. We present the
different methods by their smoother, their prolongation, and their restriction.

A Multigrid Method j& Supercomputers 291

MGJACOBI: The smoother is the damped Jacobi method with the optimal
relaxation parameter w = 0.8; the restriction and the prolongation are the
well-known 9-point schemes.

MG.GAUSS-SEIDEL: The smoother is the GaussSeidel method with lexico-
graphical ordering; the restriction and the prolongation are the same as
above.

MG.RB 9: The smoother is the red-black relaxation; the restriction and the
prolongation are the same as above.

MG.RB 7: The smoother is the same as above; the restriction and the
prolongation are the 7-point schemes.

MG.RB 5: The smoother is the same as above, the restriction is the 5point
one (i.e. the ha&injection), and the prolongation is the 7-point one.

All these algorithms are tested with the right-hand side f(x, y) = 2[x(l- x)
+ y(l- y)], so that the exact solution of Equations (11.3) and (11.4) is
u(x, y) = x(1 - x)y(l - y). Thus, we can take as the convergence criterion

Iluf - till Q E, (111.1)

where of is the approximation and u is the exact solution. To compare the
different algorithms we chose to compute the reduction factor

Ilu;” - t&II
ri =

II+ull ’

where]I.]I denotes the Euclidean norm. The average reduction factor is
therefore

iter

(1
l/iter

7= nTi (111.2)
i=l

where ITER is the number of iterations needed to satisfy (111.1). We used
subroutines from well-known packages [24, 111 for the direct solve and
various linear algebra procedures. In the next sections, we shall see the
influence of the smoother and the influence of the restriction and prolonga-
tion.

III. 1.1. Influence of th Smcothe7. In previous sections we saw that the
red-black relaxation has a very good smoothing factor, better than the
Gauss-Seidel method and the optimal damped Jacobi method. In order to

292 R. HEBBIN, S. GERBI, AND V. SONNAD

TABLE 1
ITERATION N~BEB AND AVERAGE RATIO FOR I= 7, N, = 16,129, e = lo-‘,

FOR THE SOLUTION OF THE MODEL PROBLEM (11.4)

(VI. %A = (19 1) (5% 1) (531)

Method ? n-m ? ln?a 7 ITER

MG. JACOBI 0.369 15 0.265 11 0.124 7
IWXXUSS-SEIDEL 0.205 10 0.106 7 0.056 4
MG.RB 9 0.140 5 0.079 3 0.031 2

compare the influence of the smoother, we implemented the same restriction
and prolongation in each program, and we chose the 9-point schemes. The
results are shown in Table 1.

Let us now turn to the influence of the number of pre and postsmoothing
steps on the efficiency of the method when red-black relaxation is used. We
always used at least one presmoothing and one postsmoothing step so as to be
able to lower the cost of intergrid operations, as pointed out in remarks (i)
and (ii) of Section 11.3.2. For the model problem (Poisson equation), the best
performance was obtained for MGAB 5 with (vi, us) = (1, l), leading to 5
iterations and an average reduction factor of 0.063 for a fine grid of 128 x 128
nodes and a coarse grid of 16 X 16 nodes. The execution time in this case is
1.71 second. If vi or ~a are increased, the iteration number and the average
reduction factor decrease, but the additional smoothing steps lead to an
increase in execution time. For instance, with (vi, ~a) = (2, l), the number of
iterations to convergence is 4, with an average reduction factor of 0.031, but
the execution time is now 2.16 seconds.

In the case of an equation with variable coefficients, however, this may no
longer be true. We took as a model problem the following equation:
e”Z%/&r2 + eV$%/Jy2 = f on the unit square, with homogeneous Dirichlet
boundary conditions. The linear system which arises after discretization of
this equation has a much wider spectrum, and with (vi, y2) = (1, l), the
number of iterations to convergence is now 13, with an average reduction
factor of 0.498; the execution time is in this case 5.49 seconds. If we now take
(vi, v2) = (2,2), the number of iterations to convergence goes down to 3, with
an average reduction factor of 0.021; the execution time decreases to 1.97
second. If additional smoothing steps are performed, the number of iterations
and the average reduction factor decrease slowly, but the execution time
increases, so that the vah.ie (vi, v2) = (2,2) seems to be optimal for this
particular equation.

These two examples ilhrstrate the fact that if v becomes large (v > 6), the
ratio 7 does not improve significantly. In [23, Theorem 8.11, Stiiben and

A Multigrid Method for Supemnnputers 293

Trottenberg show that typicahy p* - constant/v when v + co, where p* is
the asymptotic spectral radius of the mu&grid iteration matrix, when h --) 0.
Thus, it is useless to use large values of v, because it only increases the
computational work.

ZZZ.1.2. Znjluence of Restrictions and Prolongatiom. We have seen that
the convergence results depend on the restriction and the prolongation used.
In [Ml, Hackbusch shows that if

L l-1 = rL,p,

L,=LF,

r=p*,

(where * denotes the Euclidean adjoint of a linear operator), the convergence
is better. One can easily prove that these assumptions are satisfied only for
the program MC.RB 7. Figure 2 ihustrates this result.

RESTRICTION & PROLONGATION

INFLUENCE FOR 1=7

-lMC.RB Q

-1.0 - ---___. rMG.RB 7

-,MC.RB 6
-1.4

- e -1.0

z

:

-2.2

- -2.6
0

z -3.0 -
0
4

-3.4 -

-3.8 -

-4.2 -
I I I I I
2 4 6

NUYBER OF ITERATIONS

FIG. 2. Influence of the type of prolongation and restriction on the convergence speed for
the solution of the model problem (11.4).

294 R. HEFWN, S. GEFiBI, AND V. SONNAD

IIZ.2. Desmiptkm of the Parallel System ZCAPl
The loosely coupled array of processors system (lCAP1) is an experimental

multiprocessor architecture designed by Dr. E. Clementi et al. at IBM
Kingston (New York) [lo]. Built around IBM machines hosting 10 FPS-184
(Floating Point System) attached processors, this system is a very versatile
tool for experimenting with parallel processing in a realistic environment.

111.2.1. Descriptbn of the Hardware. Each of the FPS-164 attached
processors (APs) has 8 Mbyte of main memory and 0.5 Gbyte of disk storage.
The peak performance of one FPS184 processor is 55 MFLOPS with special
hardware. The FPS184 processors connect to the IBM mainframe via the
standard IBM %Mbyte/sec channels. Presently, ICAPl is front-ended by an
IBM 3081, supplemented by IBM 4381 and IBM 4341 systems. All three
systems run the VM/SP operating system. Because of the slow transfer rate
from AP to host and back, shared bulk memories were added for faster
communication between processors. The shared bulk memories were de-
signed by Scientific Computing Associates, Inc. (SCA, New Haven, Conn.).
Five of these memories are 32 Mbyte large and attach to four processors; the
sixth one is 512 Mbyte and can attach to twelve processors. A second
addition to the primitive 1CAP configuration was a fast bus, the FPSBUS,
connecting all ten of the FPS machines. The FPSBUS has the capability to
transfer data at a rate of 32 Mbyte/set along the bus, and 22 Mbyte/set
from the bus to the FPS node. The present configuration of ICAP is shown
in Figure 3. We mention that a second system, lCAP2, has also been
constructed at IBM Kingston. This system is very similar to lCAP1, except
that the mainframe is now the dyadic IBM 3084, running the MVS operating
system, and the attached processors are FPS-284.

ZZZ.2.2. Description of the Communication software. Software provided
and maintained by FPS is actually responsible for communication between
the host and the APs; the same is true with SCA for communication between
APs via the shared memories. A precompiler and a scheduler have been
written by the researchers in the Department of Scientific and Engineering
Computation at IBM Kingston, in order to provide the users with easy
directives which are inserted in the FORTRAN codes (see [7] and [lo] for a
complete description).

A parahel code typically consists of a FORTRAN program, the master
program, which runs on the IBM host, and FORTRAN AP routines, also called
slave programs, which are called by the master program to run on one or
more APs. The actual configuration information (number of slaves and APs
used) is defined in a COMMON block which is automatically set up when
calling the scheduler. The FORTRAN master program may execute the sequen-
tial portion of the code and calls the AP routine when it reaches a parallel

A Multigrid Method jbr Supercomputers 29.5

164 rllh Disks 6 Mar Boards SCA Bulk Shorad Ymory

IJ SCA Bulk Shored Mm-nary
(12 Mbytes)

- SCA Dolo Path
(44 hib+s/s*c)

FIG. 3. Configuration of the 1CAP system.

portion. In our case, however, the sequential portion is reduced to data input
and output, and data transmission between the host and the attached
processors.

There are two different ways of programming the AP routines for the
transfer of data between AI’s, both using the shared memory; the chosen
mode is defined in the master program right after the START directive. One
mode is a purely shared-memory mode, i.e., the APs read and write to and
from the shared memory, using the MOVE directive. We chose this mode in
our program because of data-transfer considerations in the algorithm (see
following sections). In the AP routine, the arrays of shared memory which are
to be used are defined via the directive

C$AP SHARED /data structure name/ iteml,...itemN

Any data transfer is done by instructions of the form

C%AP MOVE shared array (dimensions) = local array (dimen -
sions 1

296 R. HERBIN, S. GEFW, AND V. SONNAD

for writing to the shared memory, and

CSAP HOVE local array (dimensions) = shared array (dimen -
sions 1

for reading from the shared memory. Finally, the

C$AP BARRIER

directive is used when synchronization between all AZ’s is needed at any
point of the parallel run.

The other mode, namely message passing, is used if one wants to send data
from one processor to another one in a transparent way, i.e. without taking
care of the actual addresses or the synchronization when reading or writing
from and into the memory. We refer to [7] for further details.

ZZZ.2.3. Communication Cost on the 1CAP System. Although the com-
munication operations from processor to shared memory or from shared
memory to processor are of O(B), where N is the number of red nodes on
the fine level on the whole domain, the communication time itself cannot be
neglected in terms of parallel efficiency. On most parallel machines, the
transmission time of a vector of length M between two directly connected
processors can be expressed as a + PM, where (Y is called the latency and p
is the transfer rate (see e.g. [15]). On the experimental 1CAP system, all
processors are directly connected, if the global shared memory is used (see
Figure 3). However, the transmission of any information from a processor A
to a processor Z3 occurs if (a) processor A writes the information into shared
memory and (b) processor B reads the information from the shared memory,
when using the shared-memory mode. Note that the message-passing mode
differs only in that the synchronization step needed between steps (a) and (b)
is handled by the communication software, in a user transparent way. On
ICAP, the time taken to transfer information from a processor to the shared
memory or the reverse is also of the form (r + PM, where the constants (Y and
j3 are respectively 360 ps and 0.2 ps; therefore, it is obviously more efficient
to transfer long vectors than short ones. However, it is not quite so straight-
forward to model the actual communication cost by the above formula, since
communication instructions typically occur simultaneously on several
processors, but the shared memory can only be accessed by four processors at
a time. Thus, there is an additional latency time which is difficult to evaluate.

ZZZ.3. Paralldizatiun by Decomposition of the Domain
Because of the very high communication costs from host to slave, the best

way to implement parallel algorithm on 1CAP is to use masterless program-
ming: the host is only used for the input and output of the data, and does not

A Multigrid Method for supercompUters 297

deal with any intermediate computed data. One way to do this is to have the
exact same code on all processors, defining for each of the processors which
part of the domain and unknowns are assigned to it. The only data communi-
cations are therefore from slave to slave, via one (or more) of the bulk
memories.

We consider here, for simplicity, a square domain which is uniformly
discretized with N = 2’ intervals on a side, which we divide into P strips of
size N x (N/P). The subregions thus defined are assigned to the P processors
(P = 1,2,4, or 8) that we use by a on&o-one mapping, thus leading to very
good load balancing. This type of decomposition was previously used for the
implementation of a parallel domain-decomposition method [15, 171. Three
types of subregions (processors) are to be distinguished, as shown on Figure 5
(Section 111.3.2):

(1) the bottom one, where the first row is subject to the physical boundary
conditions, and information from the next processor will only be needed for
the computations done on the nodes of the last row, which is the boundary
between subregions 1 and 2;

(2) the intermediate ones, where information is needed from the previous
processor for the first row, and from the next processor for the last row;

(3) the last one, where the last row is subject to the physical boundary
conditions, and information is only needed from the previous processor for
the first row. Note that in a more general case, load balancing would not be
so easy to deal with, and that the data structure would have to be carefully
Studied.

In the following subsection, we describe how we make use of the shared
memory for the communications which are required between processors.

111.3.1. Procfxhws for Local Communication. The communication
which takes place between the processors can be classified into two cate-
gories: global communication and local communication.

By global communication, we refer to the transmission of data from each
processor to every other processor, which occurs in the computation of the
dot product (needed for the convergence criterion) and for the direct solve;
the data-flow analyses of these steps are presented in the core of the parallel
multigrid method (see following section).

By local communication, we mean either the transmission from the shared
memory to a specific processor of the boundary data which were computed
on neighboring processors, or the transmission by one processor to the shared
memory of the data at the boundaries of the subregion it is assigned to. Two
procedures were written to take care of local communication, namely R E A DSM

(read from shared memory) and W R ITSM (write into shared memory), which

298 R. HERBIN, S. GERBI, AND V. SONNAD

carry out the following instructions:

READSM:

HOVE from shared memory to local memory:

first row of processor 2 for processor 1,
first row of processor i p + 1 and last row of processor i p - 1 for
processor ip, l<ip<P,
last row of processor P - 1 for processor P;

WRITSH:

MOVE from local memory to shared memory:

last row for processor 1,
first and last rows for processor i p, 1~ i p < P,
first row for processor P.

BARRIER (synchronize)

Note that a synchronization step is required at the end of WRITSM, to
prevent a processor from reading from shared memory (i.e. reaching a CALL
R E A D S M) before another has moved the appropriate data into shared memory.

In the FORTRAN code, the shared memory is represented by an array,
where the updated data are being read and written starting at a certain
address. For the purpose of local communication, this array is organized as
shown in Figure 4, where N is the number of nodes on the horizontal side.

We pointed out in Section 111.2.3 that on the ICAP system, one should try
to have as few and as long data transfers as possible, which we did by
packing vectors together before moving them. Consider a processor i p, with
1 < i p < P; in WRITSH, this processor is going to move a local array of length
2N (first and last row, which have been jointed into the local array) into
shared memory. Note that if we had used the message-passing mode, this
would not have been possible, since one of the vectors needs to be sent to
processor i p - 1 and the other one to processor i p + 1. In READS M, processor
i p has to access two vectors which do not follow one another, i.e., a vector of
length N starting at address 2N(i p - 2) + 1, and another of the same length
starting at address 2N(i p - 1) + N + 1. This move cannot be done at once

______________________-_______...______________________________-.., --__L_____
Ilast linellst line Ilast line1 Ilast linellst line Ilast line1 jlst line I
I of1 I of 2 I of2 I I of ip-1 I of ip I of ip I I OfP I
---___---_____-----_~~----~~~~~~~______________________~~~~____~~~~ _____-----

I I I I I
1 N+l ZN+l 3N+l ZN(ip-:I+N+l ZN(ip-l)+l

FIG. 4. Organization of the shared memory.

A Multigrid Method for Supercomputers 299

unless the data between the last address of the first vector and the first
address of the second one are also transferred from shared memory to local
memory, thus doubling the length of the data to be transferred. It turns out
that this last operation is preferable to doing two transfers, at least for
N < 2000, which is always the case in our algorithm. Note that once again,
this reduction of communication time could not have been done using the
messagepassing mode.

In the multig.rid method, two global communications are required
throughout one iteration: communication of the defect on the coarse grid
before the direct solve, and communication of the partial dot products in the
convergence criterion.

ZZZ.3.2. The Parallel Multigrid Method. We now turn to the data flow
for one iteration of the parallel multigrid procedure (MGMP): at the begin-
ning of the iteration, we assume that u is the last-computed approximation to
the solution, or the initialization, and that the array in the shared memory is
organized as we depicted above, and contains u at the boundaries of each
subregion (bottom and top, except for the first and the last subregion). We
denote by L and L, the levels of the fine and coarse grid, respectively.

I. From grid K to grid K - 1, K = L to L, + 1, step - 1. The descent
step consists of:

A. A smoothing step; the data flow for this step is the following:

1. READSM (if initial guess is not 0)
2. Computations on all red points of processor i p, i p = 1,. . . , P
3. WRITSM
4. READSM
5. Computations on all black points of processor i p, i p = 1,. . . , P
6. WRITSM

B. The computation of the Laplacian of the result of the smoother.
This operation is done on the red points only, because of the
properties of the red-black relaxation method (see Section III). The
data flow is the following:

1. READSM
2. Computations on all red points of processor i p, i p = 1,. . . , P

There is no need to write in shared memory after the computation,
since the Laplacian is only needed for the computation of the
defect, which is a totally local process (pointwise subtraction).

C. The restriction of the defect from grid K to grid K - 1. Since the
5-point restriction with red-black ordering is used, this operation
boils down to the half-injection, which is obviously a completely
local process. Note that the restriction of the defect becomes the

300 R. HEBBIN, S. GERBI, AND V. SONNAD

right-hand side for the smoother on the next grid; it is therefore not
needed in shared memory.

II. Direct resolution on grid L,. Since the number of points on the coarse
grid is small, the direct resolution of the defect equation of the last grid
is done sequentially. There are two alternatives for this operation: either
pass all data to one processor which does the direct solve and passes the
result back to the other processors as needed, or pass all data to each of
the processors, solve directly on all processors, and then keep only the
data which are needed. We chose to implement the second alternative,
because it involves fewer data transfers to and from shared memory
than the first one. The data flow for this step is the following:

1. MOVE to shared memory the array of the restricted defect, at
the adequate address

2. BARRIER (synchronize)
3. Read the whole right-hand side in shared memory
4. Do the direct solve on the whole domain on each processor
5. Renumber the array of the solution so as to keep the array of

components corresponding to the nodes of this processor only
6. WRITSM

III. From grid K - 1 to grid K, K = L, + 1 to L. Once the direct solve has
been done on the coarse grid, multigrid takes us back to the fine grid by
doing, on each grid, a prolongation on the next grid, a correction, and a
postsmoothing step. The data flow of the postsmoothing step has
already been studied; after the correction step, we need to write the
result in shared memory; again, this is performed by calling W RITSM.

The only step which we have not studied yet is the prolongation. We have
implemented the ‘I-point prolongation, which was previously used in a
vectorized multigrid method for the CDC Cyber 205 computer by Barkai and
Brandt 133, and is also very suitable for a parallel implementation. The
prolongation procedure is depicted in Figure 5 and is carried out by averag-
ing coarse-grid vectors. First, let us recall that the use of red-black ordering,
combined with the fact that a relaxation sweep always follows an interpola-
tion, implies that only the black points among the fine-grid points need to be
prolonged, since the red points will be computed from the black ones by the
relaxation sweep. We first compute the fine black nodes located horizontally
between two coarse red nodes, by doing the half-sum of two column vectors
of the coarse grid. This is, of course, a vector operation; moreover, it does not
require any information from the neighboring processor, so that no read from
shared memory is required. Then, the fine black nodes located vertically
between two coarse red nodes are computed by doing the half-sum of two

A Multi&d Method for Supercomputers 301

i-

I

I
I

I-

.___B__@ey@_
46

31 32 33 34

,I &S&

R B R B R B R B R B R
35 36 37 38 39 40 41 42 43 44 45

processor w 4
B

2': 2: 2':
B

2;
6 R B R B

20 24 26 27 26 29 30

R B R B R
5

._B____R____B____R____B____R____B____R____B____R____R____

50 51 52 53 54 55 56 57 58 59 60

R B R B R B R B R B R
35 36 37 38 39 40 41 42 43 44 45

processor x 3
B R B R B R B R B R B

20 21 22 23 24 25 26 27 28 29 30

R B R B R B R B R R B R B R
1 2 3 4 5 6 7 8 9 1: 11 12 13 14 15

R B R B R B R B R B R B R B R
12 3 4 5 6 7 8 9 10 11 12 13 14 15

R B R B R B R B R B R B R B R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Prolongation from level k= 3 to k = 4.

A- 1st addition (column vectors)
4 2nd addition (row vectors)

a

FIG. 5. Example of the grid-point assignment and prolongation for four processors for a fine
grid, I= 4.

row vectors of the coarse grid. This is again a vector process. However, for
the computation of the fine black nodes of the first line, the last row of the
coarse red nodes of the previous processors are needed, thus leading to a data
transfer from the shared memory (READSM). Also, the first row of the first
processor and the last row of the last processor have to be computed, taking
care of the boundary conditions (the same is true for the first and last
columns of each processor). Note that no write into shared memory is needed

302 R. HERBIN, S. GEFW, AND V. SONNAD

after the prolongation, since it is followed by a correction step, which is
entirely sequential.

IV. Data-flow analysis of the convergence criterion. We now turn to the
data flow for the convergence criterion. We recall that we have chosen

where ui is the approximation and u is the exact solution. The data
flow for this step is the following:

1. Do the partial dot product on each processor
2. MOVE from local memory to shared memory the partial dot

product
3. BARRIER (synchronize)
4. Write from shared memory to local memory all the partial dot

products
5. Each processor adds the partial dot products

IV. NUMERICAL RESULTS

We have implemented a parallel code for two model equations of the form

Lu=g inQ=]O,l[X]O,l[,
(IV.1)

u=o on aq

where LU = - Au in the first case, and Lu = a(x) a2u/&x2 + b(y) a2u/ay2

+ [c(x)+ d(Y)1 u with a(x)b(y)>O V(x, y)~!ii? in the second case. For
numerical experiments we took a(x) = ez, b(y) = e*, c(x) = 0, d(y) = 0.
The right-hand side g is taken so that the exact solution is u(r, y) =
x(1 - x)y(Z - y) in both cases.

Note that:

(1) In both cases, we use as the smoother the red-black relaxation method
with the 5point restriction, which is in fact the half-injection and the 7-point
prolongation.

(2) In the case where one direction is privileged, it would be more
efficient to use an alternating line coloring (see [Zl]).

After one has obtained a parallel algorithm, it is natural to try to measure
its performance in some way. The most commonly accepted measure is the

A Multigrid Method for Supercomputers 303

speedup, which is frequently defined as

s, =
execution time using one processor

execution time using p processors '

The strength of this definition is that it uses execution time and thus
incorporates any communication or synchronization overhead. A weakness is
that it can be misleading to focus on algorithm speedup when in fact one is
usually more interested in how much faster a problem can be solved with p
processors. Thus, we wish to compare the “best” sequential algorithm with
the parallel algorithm under consideration, and we define

S’=
execution time using the fastest known algorithm on one processor

-P execution time using the parallel algorithm on p processors

EXECUTION TIME for MGMP
Poisson equation

c -I 1=7 cs

0.x
----___ + 1=7 NC:

5 ‘\ .--._ x 1 =8 cs
‘\ ._._._ 0 1=8 NC:

‘C._

. ‘._

----------______________

I I I I I I I I

2 4 6 8

NUmbQr Of prOCQQQOr8

FIG. 6. Execution time of the parallel multigrid code, for the Poisson equation (11.4) with
(vl, v2) = (1, l), fin-d levels 1= 6, 7, 8 (64 x 64, 128 X 128, and 256 x 256 nodes respectively),
coarse-grid level 6 = 4 (16 X 16 nodes), and error tolerance E = lOme. Number of iterations
performed: 4 with 1= 6 or 7, and 5 with I = 8. CS: with a fast Poisson solver for the exact coarse
solution; NCS: with 10 iterations of the SOR method (o = 1.73) instead of the exact coarse
solution.

304 R. HERBIN, S. GERBI, AND V. SONNAD

This ratio is very difficult to obtain, because one does not know which
algorithm is actually the fastest. In our case, however, multigrid methods are
known to be among the fastest methods implemented on a serial machine, so
that Si can be expected to be close to S,. Finally, we define the efficiency by

Ep=s,.
P

Because of memory requirements, when the finest grid is of level 8 or higher,
the code has to be run on more than one processor. In such cases, we have
measured the speedup and the efficiency in base 2, defined now by

execution time using two processors S
S,,, = E P.2

execution time using p processors ’ p,2= p/2’

PARALLEL RED-BLACK MULTIGRID
Poisson Equation

-I ideal
___---- + 1=6 cs
-- x 1=7 cs
.-.-._ o 1=7 NC:

‘W ., I

‘.
‘. A\
‘.

- ‘.
‘.

._%.
‘. .

%._,

“‘-‘:=ll-l--:-l-ll:

‘t
c

60 -

----___ --__ ---A___
----___

20 -
----.___*

I I I I I I I

2 4 0 0

Number of processors

FIG. 7. Efficiency base 1 (i.e., w.r.t. the execution time on one processor) of the parallel
multigrid code for the Poisson equation (11.4), with (Ye, us) = (1, l), finegrid levels 1 = 6, 7,
coarse-grid level .$ = 4, and error tolerance E = lo-‘. CS: with a fast Poisson solver for the exact
coarse solution; NCS: with 10 iterations of the SOR method (w = 1.73) instead of the exact
coarse solution.

A Multigrid Method jbr Supercomputers 305

In order to measure the efficiencies, the sequential code was run on one
processor, when possible, and the parallel code on 2,4, and 8 processors. The
execution time includes all computation, communication, and synchroniza-
tion times needed in the mu&rid iterations themselves and in the conver-
gence test, but does not include the computation of the matrix coefficients,
since we are interested specifically in the parallel efficiency of the multigrid
method. Note, however, that including the matrix computation time would
lead to even better speedups, since it is an entirely parallel process.

Figure 6 shows the execution times for the Poisson equation. The optimal
times were obtained for one presmoothing and one postsmoothing steps,
leading to 4 iterations to convergence for fine levels 6 and 7 (64 ~64 and
128 X 128 grid nodes respectively), and 5 iterations for fine level 8 (256 x 256
grid nodes). Although the number of iterations tends to decrease with

PARALLEL RED-BLACK MULTIGRID
Poisson Equation

_I ideal
_ _ _ _ _ _ _ t 1=0 cs
.- x 1=7 cs
._._._ 0 1=8 cs
---_ x 1=7 NC:

. I 1=8 NC:

I I I 1 I I I I I

2 4 6 8 10

Number of processors

FIG. 8. Efficiency base 2 (i.e., w.r.t. the execution time on two processors) of the parallel
multi&d code for the Poisson equation (11.4) with (ul, us) = (1, l), finegrid levels 2 = 6, 7, 8,
coarsegrid level .Jc = 4, and error tolerance E = lo-‘. CS: with a fast Poisson solver for the exact
coarse solution; NCS: with 10 iterations of the SOR method (o = 1.73) instead of the exact
coarse solution.

306 FL HERBIN, S. GERBI, AND V. SONNAD

increasing coarse grid level, the best results were obtained for a coarsegrid
level of 4. Higher coarse levels lead to a high coarse-grid resolution cost; on
the other hand, lower coarse levels reduce the parallel efficiency because of
the small number of nodes (see Section 111.2.3).

Although the execution time of the sequential code is excellent, we can see
in Figures 7 and 8 that we get good parallel efficiency only for large
problems. For smaller problems, the ratio of communication cost to computa-
tional cost increases, thus leading to a lower parallel efficiency. Note that the
efficiency levels off with an increasing number of processors: the communica-
tion routines READSM and W R I TSM take up more time because of the delay
in getting access to the shared memory. This raises the difficult issue of
programming the interprocessor communications so that the processors do
not try to access the shared memory simultaneously.

EXECUTION TIME for MGMP

Exponential coefficients

-ml=6

"1

tl = 7

B- -- xl = 8

I-
“F--.____

---__ --__

I
““t----______________

-----------____.____.___+

I
I I I I I I I

2 4 6 e

Number of processors

FIG. 9. Execution time of the parallel multigrid code with an exact coarse solution for the
exponential coefficient equation (IV.l), with (Q, Q) = (2,2), fine-grid levels 1= 6,7,8, coarsegrid
level I, = 4, and error tolerance E = lo-‘. Number of iterations performed: 3 with 1 = 6 or 7, and
4 with 1= 8.

A Multigrid Method for Supercomputers 307

PARALLEL RED-BLACK MULTIGRID
Exponential coefficients

-I ideal

_______ + 1 =6

-I 1 =7

c-__ --__ --__ --__ --__
-+--.___ ---___

----a____
----a__ ---___ ---__

--t
20 -

I I I I I I I
2 4 6 6

Number of processors

FIG. 10. Efficiency base 1 (i.e., w.r.t. the execution time on one processor) of the parallel
multigrid code with an exact coarse solution, for the exponential coefficient equation (IV.l), with
(Y,, us) = (2,2), fine-grid levels 2 = 6, 7, coarsegrid level 1, = 4, and error tolerance e = lo-“.

Figure 9 shows the execution time for the exponential coefficients equa-
tion; in these experiments the number of pre and postsmoothing steps was
taken to be (vi, us) = (2,2), from the sequential tests which were performed
previously (see Section 111.1.1). The execution times are a little larger than for
the Poisson equation. The parallel efficiency, however, is somewhat better
(see Figures 10 and 11). This is due to the fact that the ratio of communica-
tion time to computation is lower. We also give, in Figure 12, the speedups
corresponding to the efficiencies of Figure 11, i.e. for fine levels 1 and in base
2. Notice that the speedups increase significantly with the size of the
problem.

In order to analyze the pa&e1 efficiency of the various steps of the
muhigrid method, we ran one iteration, with one presmoothing step and one
postsmoothing step. We then inserted clocks for each procedure, counting
computation, communication, and synchronization time, and summed the
timings thus obtained for all grid levels. The results are shown in Table 2.

FL HERBIN, S. CERBI, AND V. SONNAD

l-

l-

l-

PARALLEL RED-BLACK MULTIGRID
Exponential coejjicients

-rideal
_______ t 1 =6
--- I 1 =7
._.-._ 01 =8

11
--.. --.. k

--__ --._ +

I I I I I I I

2 4 0 6

Number of proceseots

FIG. 11. Efficiency base 2 (i.e., w.r.t. the execution time on two processors) of the parallel
multigrid code with an exact coarse solution for the exponential coefficients equation, with
(Ye, ve) = (2,2), fine-grid levels I = 6, 7, 8, coarsegrid level Ic = 4, and error tolerance e= lo-‘.

Note that these results are averaged on a number of runs, since the synchro-
nization time in one of the procedures may vary from one run to the next,
depending on the order in which the processors get access to the shared
memory. In order to get these results, we took a large problem; therefore we
have very good overall parallel efficiencies (88.5% for 4 processors and 70%
for 8 processors). From Table 2, we see that:

(1) The two most time-consuming steps, namely pm- and postsmoothing,
show excellent parallel efficiency, although they require two calls to READS M
and W R I TM (which includes a BARR I ER). The presmoothing step is a little
more efficient than the postsmoothing one; this is due to the fact that on all
grids coarser than the fine one, the computation of the red nodes is simpler
because the starting guess is 0, and it does not require a previous R E ADSM
(see Section 111.3). These results confirm the choice of the multicolor SOR as
a parallel smoother.

A Mg~ltigridMethdforSupercomputers

*, .RARALLEL RED-BLACK MULTIGRID
Bxponential coefficients

-I ideal
_______ tl = 6

----Xl = 7

* ._._._ 01 = 8
4-

w

:
.o

2 4 6

Number of processors

309

FIG. 12. Speedup, base 2 (i.e., w.r.t. the execution time on two processors) of the parz&l
mu&rid code with an exact coar~e solution for the exponential coefficient equation, with
(~1. ~2) = (2,2), finegrid levels l= 6, 7,8, coarse-grid level 6 = 4, and error tolerance E = 10ms.

(2) The second most timeconsuming step is the prolongation. This step
requires a READS M; it can be optimized by calling the vectorized APAL (FPS
assembler language) versions of SAXPY and SSCAL, which add vectors and
multiply them by a scalar. Note that the parallel efficiency of this step is also
excellent.

(3) One step is actually lowering the parallel performance: the coarse-grid
resolution. The time for this resolution increases with the number of
processors. This is absolutely normal, since the resolution is inherently
sequential, and is performed on all processors. Furthermore, it requires a call
to READSH and WRITSM. This raises the question of implementing the
multigrid method with no coarse-grid resolution, or only a few steps of the
smoother on the coarse grid. However, when no coarse resolution is per-
formed, the convergence ratio of the multigrid method is known to increase;
therefore, although the parallel efficiency can be expected to be better, the
increasing number of iterations should also increase the execution time, at

310 R. HERBIN, S. GERBI, AND V. SONNAD

TABLE 2 <
ANALYSIS OF THE TIME AND PERCENTAGE TIME SPENT IN EACH ROUT& ’ ’

Procedure

2APs 4 APs 8APs

Tim& 96 Tim? I Eff.’ Tim&’ % Eff.’

Presmoothing 2301 28.1 .1213 26.1 94.8 6662 22.6 87.1
Matrix multiply .0691 8.6 6359 7.6 96.3 .0185 6.3 93.8
New residual .02Q8 3.6 .0150 3.1 98.5 .0077 2.5 98.0
Restriction .0255 3.2 .0128 2.7 99.5 .OQ66 2.3 98.0
Coarsegrid solve .0544 6.7 .0548 11.7 49.6 6614 21.0 22.2
Prolongation .0828 10.1 6434 9.3 95.3 .0229 8.1 90.8
Correction .0189 2.3 .OOQ5 1.9 99.5 6050 1.7 98.4
Postsmoothing 2479 30.1 X334 28.8 92.9 .0722 24.7 85.9
Euclidean norm .0597 7.3 .0411 8.8 72.5 .0316 10.8 47.3

Total .8177 100.0 .4624 100.0 88.5 .2921 100.0 70.0

“For one iteration of the parallel mu&grid code, using a fast Poisson solver on the
coarse grid (level 4), for the solution of the model problem (II.4), with fine
~I;l;J=8(5,025 nodes), one presmoothing and one postsmoothing step.

‘Average paraBe efficiency of each routine.

least for the Poisson problem, for which very fast solvers are available. For a
more general problem for which no fast solver is available, this approach
might be a lot more interesting. We implemented the code with 10 steps of
the SOR method with a relaxation parameter w = 1.73 instead of the fast
Poisson solver on the coarse grid. The results are shown on Figures 6,7, and 8
by the curves labeled NCS. It is readily seen that, although the execution
times are somewhat larger than with a fast Poisson solver, the overall parallel
efficiency is much higher; these results could be further improved by the use
of a more efficient system solver such as the conjugate-gradient method.

We would like to thank I. F. Ma&e and M. Schultz for their valuable
suggestions and comments. We are also grateful to W. Gropp and D. Keyes
for interesting discussions about the parallelization of numerical algorithms.
To E. &me&i of IBM Kingston, we express our gratitude for support of this
work.

REFERENCES

1 L. M. Adams, Iterative Algorithms for Large Sparse Linear Systems on Parallel
Computers, Ph.D. Thesis, Univ. of Virginia, CharlottevilIe; also published as
NASA CR-166627, NASA LangIey Research Center, Hampton, Va., 1982.

A M$tigrid Method for Supercomputers 311

8

9

10

11

12

13

14

15

16

17

18

19

26

21

22

L. M. ,Adams and J. Ortega, A multicolor SOR method for parallel computation,
Proc. 1982 Znt. Conf. Par. Z+oc., 1982, pp. 53-56.
D. Barkai and A. Brandt, Vectorized multigrid Poisson solver for the CDC Cyber
265, A&. Math. Cutnput. 13:215-228 (1983).
R. E. Bank and T. Dupont, An optimal process for solving finite element
equations, Math. Cmp. 36:35-51 (1981).
A. Brandt, Multi-level adaptive solutions to boundary value problems, Math.
cmnp. 31:333-396 (1977).
A. Brandt, Multigrid solvers on pamlIe computers, in Elliptic Problem Solvers
(M. H. Schultz, Ed.), Academic, 1981, pp. 39-83.
R. Caltabiano, A. Carnevali, and J. Detrich, Directives for the Use of Shared Bulk
Memories, an Extension to the Recompiler, IBM Technical Report KGN 110,
1987.
T. F. Chan and Y. Saad, Multigrid algorithms on the hypercube multiprocessor,
IEEE Trans. Cornput. C35:ll (1986).
T. F. Chan and R. Schreiber, Parallel networks for multigrid algorithms: Archi-
tecture and complezity, SZAMZ. Sci. Statist. Cumput. 6(3):698-711 (1985).
E. Clementi and D. Logan, Parallel Processing with a Loosely Coupled Array
Processor System, IBM Technical Report KGN 43, 1986.
J. J. Dongarra, J. R. Bunch, C. B. Moler, and J. W. Stewart, LINPACK Users '

Chide, SIAM Publications, Philadelphia, 1979.
H. Foerster, K. Sttiben, and U. Trottenberg, Non-standard multigrid techniques
using checkered relaxation and intermediate grids, in Elliptic Problem Solvers
(M. H. Schultz, Ed.), Academic, 1981, pp. 285-309.
D. Gannon and J. Van Rosendale, On the structure of parallelism in a highly
concurrent PDE solver, Z. Parallel and Distributed Comput. 3:166-135 (1986).
A. Greenbaum, A multigrid method for multiprocessors, Appl. Math. Cmput.
19:75-88 (1986).
W. D. Gropp and D. E. Keyes, Complexity of parallel implementation of domain
decomposition techniques for elliptic partial differential equations, SIAM J. SC&
Statist. Comput., to appear.
W. Hackbusch, Multigrid Methods and Applications, Springer Series in Compu-
tational Mathematics 4, Springer, 1985.
R. Herbin, W. D. Gropp, and D. E. Keyes, A Domain Decomposition Technique
on a Loosely Coupled Array of Processors, IBM Technical Report KGN 124,
1987.
J. F. Maitre and F. Musy, Multigrid methods: Convergence theory in a varia-
tional framework, SLAM Z. Numer. Anal. 21657-671 (1984).
0. McBryan and E. Van de Velde, Elliptic equations algorithms on parallel
computers, Comm. A&. Numcr, Math. 2:311-318 (1986).
0. McBryan and E. Van de Velde, Hypercube algorithms and implementations,
SZAM I. sci. Statist. Comput. 8227-287 (1987).
D. P. O’Leary, Ordering schemes for parallel processing of certain mesh prob-
lems, SZAA4Z. Sci. Statist. Cumput. 5:629-632 (1984).
J. M. Ortega and R. G. Voigt, Solution of partial differential equations on vector
and parallel computers, SZAM Rec. 27(2):149-246 (1985).

312 R. HEBBIN, S. GEBBI, AND V. SONNAD

23 H. Siiben and U. Trottenberg, Multigrid methods: Fundamental +lgorithm~,
model problem aualysis and applications, in Mu&grid Methods, Proceedhgs
Kh-Porz, Nov. 1981 (W. Ha&bush and U. Trottenberg, Eds.), Lect. Notes in
Math., 960, Springer, Berlin, 1982.

24 P. Swarztrauber and R. Sweet, Efficient mw Subprograms for the Solution
of Pytial Differential Equations, NCAB-TN/IA-lOQ,lQ75.

25 R. Varga, Matrix Zterative AnuZ@s, Prentice-Hall, Englewood Cliffs, N.J., 1962.
26 P. Wesseling, Theoretical and practical aspects of a multigrid method, SZAM J.

sci. Statist. Cmput. 3:387-407 (1982).
27 P. 0. Frederickson and 0. A. McBryau, Parallel Superconvergent Multigrid,

Applied Math. Ser., Pitmau, Boston, to appear.

