
A STABILITY ANALYSIS FOR A FULLY NONLINEAR

PARABOLIC PROBLEM IN DETONATION THEORY

C.M. BRAUNER1, S. GERBI2, C. SCHMIDT-LAINE3
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Abstract : This work is concerned with the the stability analysis of the

constant stationary solution of the following fully nonlinear parabolic

equation: ut+
1
2u2

x = f(cuuxx)+ln u, x ∈ (0, l) with ux(0, t) = ux(l, t) = 0,

where f is a smooth function satisfying f(0) = 0, f ′ > 0 and f(IR) = IR.

In the case where f(s) = ln
[

exp(s)−1
s

]

, this equation represents the evo-

lution of the perturbations of the Zeldovich-von Neuman-Doering square

wave occuring during a detonation in a duct. We first study the stationary

solutions and reveal a bifurcation phenomenon.



Then, by formulating the problem as an abstract equation defined on a

suitable Banach space, we are able to use the extension to fully nonlinear

problems of the classical geometric theory for semilinear parabolic equa-

tions. In this way, we prove that the equilibrium point u0 = 1 is unstable.

Moreover, a more careful description of a special class of initial conditions

for which u0 is stable.

KEY WORDS: detonation, bifurcation, fully nonlinear equations, invari-

ant manifolds.
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1. INTRODUCTION

Let us consider the following fully nonlinear problem:
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





ut +
1

2
u2

x = f( c u uxx ) + ln u, x ∈ (0 , l), t > 0

ux (0 , t) = 0 , ux (l , t) = 0, t > 0

u (x , 0) = U (x) > 0, x ∈ (0 , l)

(1)

where the derivatives are denoted by indexes, c and l are positive real constants, f is

a real smooth function of one variable satisfyingf(0) = 0 , f ′ > 0 and f(IR) = IR.

This paper is concerned with the stability of the unique constant stationary so-

lution of Problem (1), namely u0 ≡ 1. Such a physical problem occurs in det-

onation theory (see Buckmaster and Ludford 4−5) for the particular choice where

f(s) = ln

[

exp(s) − 1

s

]

. From the mathematical point of view, the fully nonlinear

character of Problem (1) requires a very specific treatment; in fact the already classical

geometric theory of semilinear parabolic equations (see Henry 13) must be replaced

by a recently generalised version by Da Prato-Lunardi9, and Lunardi15−16 to fully

nonlinear parabolic problems. They proved the existence of the invariant manifolds

of a stationary solution in the same manner as Henry, provided that the derivative

of the operator computed at this stationary solution, say L0, generates an analytic

semigroup in interpolation spaces between the domain of its iterate. We refer to Da

Prato-Grisvard8 for the formal functional analysis framework. The stability of the

trivial solution u0 ≡ 1 is investigated using their results. Precisely, we state that this

equilibrium state is unstable by mean of a linearised stability principle. Moreover, a

more careful description of the stable, unstable and center-unstable manifolds14 leads

to the determination of a special class of initial conditions for which u0 may be stable.

The paper is organised as follows: in section 2 we present the origin of the Problem

(1) in the special case of a detonation in a duct. Section 3 is devoted to the existence

of stationary solution of Problem (1) as well as the related bifurcation phenomenon:
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in our detonation problem, we can observe, by the use of a numerical proof, a global

bifurcation phenomenon. Section 4 deals with the local existence and the instability

of the trivial stationary solution u0. Section 5 is devoted to the non singular (no

null eigenvalue) case of saddle point configuration. We present the existence of the

stable and unstable manifolds and we get an approximation of the stable manifold by

formulating the question of the stability of the trivial solution as a problem in finding

a root of a differential mapping defined in suitable Banach spaces and by applying

the Implicit Function Theorem. We point out that this method being constructive,

it provides a numerical scheme to approximate the stable manifold2−12.

Let us mention that various aspects of this problem have been previously studied

by two of the authors and coworkers:

• in 2, they formally studied the stability of the trivial stationary solution and

they performed a numerical approximation of the stable manifold in the non

singular case,

• in 1, they have used a semilinear approximation of Problem (1) to completely

study the stability of the trivial stationary solution and to show off the effect of

the logarithmic term on the singular behaviour of the evolutive solution, namely

the quenching phenomenon.

The quenching phenomenon for the fully nonlinear Problem (1) is investigated in

a forthcoming paper by Galaktionov, Gerbi and Vasquez11.
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2. FROM THE PHYSICAL PROBLEM TO THE MATHEMATICAL

FORMULATION

Detonations waves are for the most part unstable10, and it is important to under-

stand the origins and the consequences of the instability. Since activation energy is a

valuable tool in flame theory (low Mach number combustion)20, it is natural to apply

it to detonations (high Mach number phenomenon) in the same way.

Consider a detonation wave propagating down a channel of length L. The steady

detonation structure is characterised by an induction zone of length δ, following an

hydrodynamic shock wave, and introducing a vigorous reaction in which heat release

occurs. We refer to Fickett10 for a more complete description. Suppose that the

viscous effects are negligible and that the chemical reaction is reduced to one gas

burning to give a product, then the governing equations are the compressible reactive

Euler equations:
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
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






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


























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
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
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

∂ρ

∂t
+ div (ρ u) = 0

ρ
D u

D t
+ grad (p) = 0

ρ
D H

D t
=

D p

D t
+ QΩ

ρ
D Y

D t
= −Ω

in which ρ stands for the density of the gas, u its velocity, p its pressure, H its en-

thalpy, Y the mass fraction of the product, Q the heat of the chemical reaction and

Ω the reaction rate.

For the sake of simplicity the gas is supposed to be perfect. The chemical reaction

is described by a one step Arrhénius law; then the preceeding system of conservation

laws is completed by the following state equations :
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Ω = B Y exp(− E

RT
) ; H =

γ

γ − 1

p

ρ
,

where γ =
Cp

Cv
is the massic heat ratio, E the activation energy and R the universal

gas constant.

In the limit of the high activation energy, the detonation structure is reduced to

the famous Zeldovich-von Neuman-Doering square wave, denoted by ZND10. But the

instability of plane detonation waves gives rise to transverse propagation of secondary

shock waves across the face of the main shock. Taking as non dimensionalised en-

ergy θ =
(E Cp)

(R u2
f )

where uf is the longitudinal speed of the shock, and searching the

disturbances of the main shock in the wave length scale y ≈ δ
√

θ, for a time scale

t ≈ δ θ

uf

, the shock position is defined as:

xshock = xZND + δ h (
y

δ
√

θ
,

t uf

δ θ
).

Writing the Rankine-Hugoniot relations, developping all the variables in the high

energy asymptotics and supposing the wall perfectly reflecting, Buckmaster and

Ludford4−5 get the following evolution equation for g = (1 +
h

K
) where K is a

positive constant:
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




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








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





gt +
1

2
g2
y = ln [

exp(c g gyy) − 1

c gyy
] , y ∈ (0 , l), t > 0

gy(0 , t) = 0 , gy(l , t) = 0 , t > 0

g(y , 0) = G(y) > 0 , y ∈ (0 , l)

(2)

where c is a nondimensionalised positive constant representing the chemical prop-

erties and l is a nondimensionalised positive constant representing the geometrical

properties. Typically, for a detonation whose overdrive coefficient is D = 1.2, a

perfect gas of massic heat ratio γ = 1.2 and a nondimensionalised heat of reaction
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Q̄ =
Q

R Tf

= 50, we have c = 0.268.

Due to the change of unknowns between g and h, the non perturbed ZND wave

is represented by the stationary constant solution g0 ≡ 1. A natural extension of

Problem (2) is obtained by considering f to be a real function belonging to C∞(IR) sat-

isfying f(0) = 0, f ’ > 0 and f(IR ) = IR and by studying the following model problem:


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
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
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






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





ut +
1

2
u2

x = f( c u uxx ) + ln u, x ∈ (0 , l), t > 0

ux (0 , t) = 0 , ux (l , t) = 0, t > 0

u (x , 0) = U (x) > 0, x ∈ (0 , l)

(3)

We naturally recover Problem (2) by taking f (s) = ln [
exp (s) − 1

s
].

At this stage, we can remark that Problem (3) is a fully nonlinear parabolic prob-

lem since the highest space derivative uxx is contained in the nonlinearity and f ’ > 0.

It admits only one constant stationary solution u0 ≡ 1, since f(0) = 0.

In the following section, we will briefly describe the stationary solutions of Prob-

lem (3) and will show off a global bifurcation phenomenon.

3. STATIONARY SOLUTIONS

The stationary solutions satisfy the nonlinear one dimensional elliptic problem:























u′′ =
1

c u
F (

u′2

2
− ln u)

u′ (0) = 0 , u′ (l) = 0

(4)

where F is the reciprocal function of f i.e. F ◦ f = f ◦ F = I; it satisfies

F ∈ C∞(IR) , F(0) = 0 , F ′ > 0 , and F(IR) = IR.
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In 12 a complete study of the stationary solutions is carried out. First a local bi-

furcation phenomenon is shown via classical Crandall-Rabinowitz results7. Moreover

a global bifurcation analysis is performed by introducing the so-called time-map as

in Chafee-Infante6, Smoller-Wasserman19 and recently Schaaf18. We recall here the

principal results on the global bifurcation phenomenon (see 12 for detailed proofs).

For m > 0, we shall study the initial value problem:























u′′ =
1

c u
F (

u′2

2
− ln u)

u (0) = m , u′ (0) = 0

(5)

whose solution will be denoted by u(. ; m). Let J(m) be the maximal interval (0 , x∗)

such that u(x ; m) > 0, for every x in J(m). We can now define the time-map T, as

follows:

D(T ) = {m > 0 , m 6= 1/∃x ∈ J(m) , u′(x ; m) = 0} ,

∀m ∈ D(T ) , T (m) = Min {x ∈ J(m) , u′(x ; m) = 0}.

We introduce a function F defined by:

∀ s < f(c) , F (s) =

∫ s

0

F(x)

F(x) − c
dx .

From the hypothesis on f, one can observe that F is twice continuously differentiable,

concave, negative and F (0) = 0. Therefore we can define a function g by:

∀ s < f(c) , s 6= 0 , s g(s) < 0 and F (s) = F (g(s)).

Thus we get the following caracterisation of the domain:

Proposition 1:

D(T ) = (m∗ , +∞) where m∗ = exp(− f(c)).
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proof:

We perform the change of unknowns:

r = u′

s =
u′2

2
− ln u

which is a diffeomorphism from IR+ × IR to IR2.

We obtain the following differential system:



























r′ =
1

c
exp(s − r2

2
)F(s) r(0) = 0

s′ =
r

c
exp(s − r2

2
) (F(s) − c) s(0) = − ln m

(6)

We seek m > 0 such that there exists t > 0 verifying r(t) = 0. It is clear that

s(t) = f(c) is a separatrix for the Problem (6), i.e:

i) if s(0) > f(c) then for every t > 0 , s(t) > f(c), and r(t) > 0.

ii) if s(0) = f(c) then for every t > 0 , s(t) = f(c), and r(t) > 0.

iii) if s(0) < f(c) then for every t > 0 , s(t) < f(c).

Therefore if s(0) ≥ f(c), i.e. m ≤ m∗, then m 6∈ D(T ). Thus D(T ) ⊂ (m∗ , +∞).

Let m ∈ (m∗ , +∞). As s(0) < f(c), for every t > 0, F (s(t)) is well defined.

It is now clear that Problem (6) has the first integral:

∀ t > 0, F (s(t)) − r(t)2

2
= Cte = F (s(0)) = F (− ln m). (7)

From this first integral, the point (s = g(s(0)) , r = 0) is on the trajectory issued

from (s(0) , 0).

Therefore there exists t > 0, such r(t) = 0. Thus (m∗ , +∞) ⊂ D(T ) •

With this notation, we obtained the following caracterisation of the solution u(. ; m)

and the following explicit formula for the time-map:
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Proposition 2:

For every m ∈ (m∗ , +∞) , m 6= 1, the function u(. ; m) is periodic with small-

est half-period T (m). Moreover we have:

T (m) = sign(− ln(m))
c√
2

∫ − ln(m)

g(− ln(m))

exp(F (s) − F (− ln(m)) − s)
√

F (s) − F (− ln(m))

ds

c − f(s)

proof:

From the first integral (7) and the symetry, a phase plane study of Problem (6) shows

that if (s , r) is on a trajectory then the points (s , − r) and (g(s) , r) are also on this

trajectory.

But since for every s < f(c), s 6= 0, g(g(s)) = s, the trajectories are closed graphs.

Thus r is periodic and as r = u′, u is periodic too. Taking into account the symmetry,

it is clear that T (m) is the smallest half-period of u(. ; m).

Moreover, writing:

T (m) =

∫ T (m)

0
1 dt

and performing the change of variable: s = s(t), ds = s′(t)dt =
r

c
exp(s− r2

2
)(F(s)−

c)dt, we get the explicit formula of T given in proposition 2•

As F is concave, non positive and increasing on [0 , f(c)), we perform the Chafee-

Infante’s change of variables: F (s) = F (x) y2, where y ∈ [0 , 1]. With this tool,

we can differentiate the preceeding formula with respect to m and we obtained the

following result on the variation of T :

Proposition 3:

Let j be the real function defined by: for every s ∈ (−∞ , f(c)) ,

j(s) =
exp(F (s) − s)

F(s)3
(F(s)2 + 2F (s) (c − F(s)) (F ′(s) + F(s))).
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Let us denote by l0 = π

√

c

F ′(0)
.

If for every s ∈ (0 , f(c)), j(s) − j(g(s)) ≥ 0, then T is a one-to-one twicely differ-

entiable mapping from (m∗ , 1] on [l0 , +∞) •

The proof of proposition 3 follows the same method that Schaaf’s one18 and need only

some technical computations. We leave these computations to the reader. Then, we

obtain the following global bifurcation phenomenon:

Theorem 1 (global bifurcation phenomenon):

For k ∈ IN, we denote by Uk = {u ∈ C2([0 , l]) , u − 1 has k zeros in [0 , l] }.
i) If l < Min{T (m) , m ∈ (m∗ , +∞)}, Problem (4) has only one solution: the

trivial one.

ii) If l ≥ Min{T (m) , m ∈ (m∗ , +∞)}, Problem (4) has at least two non trivial

solutions.

iii) We suppose that for every s ∈ (0 , f(c)), j(s) − j(g(s)) ≥ 0, and l ≥ l0. Set

k = E[l/l0] the integer part of l/l0.

Problem (4) has exactly 2 k non trivial solutions where two belong to U1, two to U2

,..., two to Uk.

Set u+(x ; l) the solution belonging to U1 such that u(0) > 1 and u−(x ; l) the solu-

tion belonging to U1 such that u(0) < 1. The function l ∈ [l0 , +∞) → u+(0 ; l) is

increasing while the function l ∈ [l0 , +∞) → u−(0 ; l) is decreasing.

proof:

It rests only on the fact that u(. ; m) is periodic with smallest half-period T (m). Thus,

it suffices that the length of the interval l contains an integer time the half-period

T (m), and because of the symmetry due to the function g, two solutions exist with the

same half-period: the one which satisfies u(0 ; m) > 1 and the other u(0 ; m) < 1 •

If f is the function defined by f(s) = ln [
exp(s) − 1

s
], in order to prove that the

inequality: ∀ s ∈ (0 , f(c)) , j(s) − j(g(s)) ≥ 0 is true, we use numerical evaluations
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of the functions F , F , j and g defined above; we thus can state that we have the

global bifurcation phenomenon of stationary solutions. In figures 1 and 2, we present

the time-map and the global bifurcation phenomenon.

0.5

1

1.5

2

2.5

3

3.5

4

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

m

T(m)

Time map

u (0;l)+

u (0;l)_

Figure 1: Time-map

4. LOCAL EXISTENCE AND LINEARISED STABILITY PRINCIPLE.

In order to use abstract results on local existence and stability for stationary solu-

tions of a fully nonlinear parabolic problem, 9−15 we shall interpret Problem (1) as

an evolution equation in a suitable Banach space.

Remark:

As the goal of this paper is to investigate the stability of the constant stationary

solution U0 ≡ 1, for ρ > 0, we regularise the singular part of Problem (1), namely

the logarithmic term, as a function lnρ belonging to C∞(IR) whose value is ln s if

s > ρ. For simplicity in the notations, we still denote by ln the regularised function

lnρ.

As in the recent paper of Lunardi16, we consider the space of Hölder continuous
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1

1.5

2

2.5

3

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

u(0)

l

Global bifurcation diagram

Figure 2: Global bifurcation phenomenon

functions: for θ ∈ (0 , 1/2), and n ∈ IN,

Cn+2θ([0 , l]) = {v ∈ Cn([0 , l]) , sup
x,y ∈ [0,l]
x 6=y

|u(n)(x)−u(n)(y)|
|x− y|2θ < ∞}

This space is a Banach space endowed with the norm:

for u ∈ Cn+2θ([0 , l]) , ‖u‖n+2θ =
n

∑

k=0

Max
x∈ [0,l]

| uk(x) | + sup
x,y ∈ [0,l]
x 6=y

| u(n)(x) − u(n)(y) |
| x − y |2θ

.

The open ball of center w and radius R from Cn+2θ([0 , l]) is denoted by Bn+2θ(w , R).

Set X = { v ∈ C2+2θ([0 , l]) , v′(0) = v′(l)}. We introduce a mapping defined on X

whose value belongs to C2θ([0 , l]) as follows:

F : X −→ C2θ([0 , l])

u 7−→ − 1
2 u2

x + f(c u uxx) + ln u.

As we supposed that f belongs to C∞(IR), it is clear that F is indefinitely differen-

tiable on X. Setting u(t) = u(. , t), we write Problem (1) as the infinite dimensional

dynamical system:
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









ut = F (u)

u(0) = U
(8)

We denote by L0 the derivative of F at the equilibrium point u0 defined by:

for every v ∈ X , L0(v) = f ′(0) c vxx + v. (9)

Its spectrum σ(L0) consists in a countable number of simple eigenvalues

λk = 1 − k2 π2 c f ′(0)

l2
, k ∈ IN, with corresponding eigenvectors wk(x) = cos(

k π x

l
).

The operator L0 is a sectorial operator and generates an analytic semigroup exp(L0 t)

on C2θ([0 , l]). Therefore the local existence result of Da Prato-Lunardi9 (prop.2.1)

and Lunardi16 (thm.2.1) can be applied:

Theorem 2 (local existence):

For every T > 0, there exists R(T ), such that, for every U ∈ X verifying

‖U − u0‖2+2θ ≤ R(T ), there exists a unique solution of Problem (1),

u ∈ C((0 , T ] ; X)
⋂ Cθ((0 , T ] ; C2([0 , l]))

⋂ C1((0 , T ] ; C2θ([0 , l])) •

The linearised stability principle for semilinear parabolic equation, Henry13, has

been generalised by Da Prato-Lunardi9 (thm.2.3) and recently improved by Lunardi16

(thm.2.5) to the fully nonlinear parabolic equations. As for every l > 0 , λ0 = 1 is

an eigenvalue of L0, this principle states that the equilibrium point u0 is unstable.

Theorem 3 (instability):

Let ω ∈ (0 , 1). There exists r > 0 , ρ > 0 such that: for every U ∈ B2+2θ(u0 , r),

there exists a unique u ∈ C((−∞ , 0] ; X)
⋂ C1((−∞ , 0] ; C2θ([0 , l])) backward so-

lution of Problem (1) and for every t < 0 , ‖u(t) − u0‖2+2θ ≤ ρ exp(ω t) •
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Since there always exists a strictly positive eigenvalue, two cases have to be dis-

tinguished: the non singular case when there is no null eigenvalue, it is the saddle

point configuration and the singular case when a null eigenvalue exists, it is the center

manifold configuration.

5. SADDLE POINT CONFIGURATION

In this section, we suppose that no null eigenvalue exists. We first state the exis-

tence of the stable and unstable manifolds and secondly we study the local behaviour

of the stable manifold and we present an approximation of it.

Let us split the spectrum of L0 in: σ+ = {λ ∈ σ(L0) , λ > 0} = {λj}j=0,..,n and,

σ− = {λ ∈ σ(L0) , λ < 0} = {λj}j=n+1,n+2,...

Let us denote by Eu = span(wi , i = 0, ..., n), the unstable space and Pu the projec-

tion of X on Eu. Set Ps = I − Pu and Es = Ps X; clearly X = Es ⊕ Eu.

5.1 Existence of stable and unstable manifolds.

The saddle point theorem for semilinear parabolic equations Henry13 stays true in

this functional analysis framework for fully nonlinear problems, Da Prato-Lunardi8

(thm.2.4) and Lunardi16 (thm.2.8).

Theorem 4 (saddle point configuration)

Let ω ∈ (0 , −λn+1).

There exists r > 0 , ρ > 0, and two unique Lipschitz continuous mappings, differen-

tiable at u0 defined by:

h : Bu
2+2θ(u0, r) ⊂ Eu −→ Es ,

k : Bs
2+2θ(u0, r) ⊂ Es −→ Eu ,
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and two manifolds:

W u = {u + h(u), u ∈ Bu
2+2θ(u0, r) ⊂ Eu}, W s = {u + k(u), u ∈ Bs

2+2θ(u0, r) ⊂ Es},
such that:

i) for every U ∈ W s, there exists a unique U ∈ C((0,+∞) ; X)
⋂ C1((0,+∞) ; C2θ([0, l]))

solution of Problem (1) and for every t > 0 , ‖u(t) − u0‖2+2θ ≤ ρ exp(−ω t).

Conversely, if U is such that ‖Ps U‖2+2θ ≤ r, and if the solution u of Problem

(1) verifies: u ∈ C((0,+∞) ; X)
⋂ C1((0,+∞) ; C2θ([0, l])) and for every t > 0,

‖u(t) − u0‖2+2θ ≤ ρ exp(−ω t) then u ∈ W s.

ii) for every U ∈ W u, there exists a unique u ∈ C((−∞, 0] ; X)
⋂ C1((−∞, 0] ; C2θ([0, l]))

backward solution of Problem (1) and for every t < 0 , ‖u(t)−u0‖2+2θ ≤ ρ exp(ω t).

Conversely if U is such that ‖Pu U‖2+2θ ≤ r, and if the backward solution of

Problem (1) u verifies: u ∈ C((−∞, 0] ; X)
⋂ C1((−∞, 0] ; Cθ([0, l])) and for every

t < 0 , ‖u(t) − u0‖2+2θ ≤ ρ exp(ω t) then U ∈ W u.

iii) h(u0) = k(u0) = u0 and h′(u0) = k′(u0) = 0.

u0 is called a saddle point, W s is the stable manifold at u0 and W u is the unstable

manifold at u0 •.

5.2 Approximation of the stable manifold.

In this section, we are interested in the local behaviour of the stable manifold. Our

method is complementary to the one of Da Prato and Lunardi because we will con-

struct the stable manifold by using the Implicit Function Theorem formulated in

suitable Banach spaces whereas they proved its local existence by using a fixed point

theorem which is non constructive. Thus a numerical method to approximate the sta-

ble manifold can be carried out. For this purpose, we will follow the method used by

D.H.Sattinger to investigate the stability of waves of nonlinear parabolic systems17.

This method has already been used in fully nonlinear context to investigate the sta-

bility of travelling front3.

For ε ∈ IR , set u = u0 + ε v, and decompose the initial condition

U = u0 + ε ξs + ε2 ξu, where ξs belongs to Es and ξu belongs to Eu are to be



a stability analysis 15

determined in order to get the solution belongs to W s.

By a Taylor serie expansion of F up to the second order, Problem (8) becomes:























vt = L0(v) +
ε

2
H0(v, v) + ε2 R(ε; v)

v(0) = ξs + ε ξu

(10)

H0 is the Hessian of F at u0, defined by: for every v,w ∈ X,

H0(v,w) = f ′′(0)c2vxxwxx + f ′(0)c(wvxx + vwxx) − vxwx − vw (11)

and R(ε; v) is the integral remainder defined by: for every v ∈ X, for every ε ∈ IR,

R(ε; v) =
1

2

∫ 1

0
(1 − σ)2F (3)(u0 + σεv)(v, v, v) dσ (12)

Denoting by Ls (resp. Lu) the restriction of L0 to Es (resp. Eu), ϕs = Psv and

εϕu = Puv, when projecting Problem (8) on Es and Eu, we get:























ϕs
t = Ls(ϕ

s) +
ε

2
PsH0(ϕ

s + εϕu, ϕs + εϕu) + ε2PsR(ε;ϕs + εϕu)

ϕs(t = 0) = ξs

(13)

and,























ϕu
t = Lu(ϕu) +

1

2
PuH0(ϕ

s + εϕu, ϕs + εϕu) + εPuR(ε;ϕs + εϕu)

ϕu(t = 0) = ξu

(14)

As Lu generates a semi-group exp(Lut), ϕu is expressed as:

ϕu(t) = exp(Lut)[ξu +

∫ 1

0
exp(−Luσ){1

2
PuH0(ϕ

s + εϕu, ϕs + εϕu)

+ εPuR(ε;ϕs + εϕu)} dσ]

(15)
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Therefore as we want to follow an orbit entering the equilibrium point u0, i.e. ϕu → 0

as t → ∞, ξu is formally expressed as:

ξu = −
∫ +∞

0
exp(−Luσ){1

2
PuH0(ϕ

s + εϕu, ϕs + εϕu)

+εPuR(ε;ϕs + εϕu)} dσ
(16)

In the same way, ϕu is formally expressed as:

ϕu(t) = −
∫ +∞

t
exp(−Lu(σ − t)){1

2
PuH0(ϕ

s + εϕu, ϕs + εϕu)

+εPuR(ε;ϕs + εϕu)} dσ
(17)

In order to use the Implicit Function Theorem, let us define the following Banach

spaces. Let ω ∈ (0,−λn+1) and i ∈ IN. Set Cω,i the space of functions u belong-

ing to C((0,+∞);Ci+2θ([0, l])) such that the function t → exp(ωt)u(t) belongs to

L∞((0,+∞);Ci+2θ([0, l])).

This space endowed with the norm, ‖v‖ω,i = sup
t > 0

‖ exp(ωt) v(t)‖i+2θ is a Banach

space.

For w ∈ Cω,0, consider the problem:























ϕs
t = Ls(ϕ

s) + Ps w(t)

ϕs(t = 0) = 0

(18)

In 16, prop.2.4, it is shown that there exists C > 0, independant of w and ϕs ∈ PsCω,2

solution of Problem (18), such that:

‖ϕs‖ω,2 ≤ C ‖w‖ω,0

Therefore, if we denote by Ks the transformation from Cω,0 to Ps Cω,2 defined by

w → ϕs, the preceeding inequality shows that Ks is a bounded linear operator. In
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order to check that the right hand side of Problem (13) belongs to Cω,0, we need the

two following lemmas:

Lemma 1:

H0 is C∞ from Cω,2 × Cω,2 to Cω,0.

proof:

As H0 is a bilinear form from X × X to C2θ, we have:

∃C > 0, ∀v ∈ X, ∀w ∈ X, ‖H0(v,w)‖2θ ≤ C ‖v‖2+2θ ‖w‖2+2θ .

Thus, for every v ∈ Cω,2, and w ∈ Cω,2, H0(v,w) ∈ Cω,0.

As H0 is bilinear, H0 is indefinitely differentiable •

Lemma 2:

R is C∞ from IR × Cω,2 to Cω,0.

proof:

As F is indefinitely differentiable on X, there exists M > 0, such that:

∀v ∈ X, ∀ε ∈ IR, ‖R(ε; v)‖2θ ≤ M ‖v‖3
2+2θ .

Thus, for every v ∈ Cω,2, and for every ε ∈ IR, R(ε; v) ∈ Cω,0.

From the property of F , it is clear that R is an indefinitely differentiable map from

IR × Cω,2 to Cω,0 •

We thus can formally express the solution ϕs of Problem (13) as:

ϕs(t) = exp(Lst)ξ
s + εKs(

1

2
PsH0(ϕ

s + εϕu, ϕs + εϕu) + εPsR(ε;ϕs + εϕu))(19)

Equations (16), (17) and (19) may be collect as follows.

For (ϕs, ϕu, ξu; ε) ∈ PsCω,2 × PuCω,2 × Eu × IR, we define:
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G1(ϕ
s, ϕu, ξu; ε) = ϕs(t) − exp(Lst)ξ

s − εKs(
1

2
PsH0(ϕ

s + εϕu, ϕs + εϕu)

+εPsR(ε;ϕs + εϕu)),

G2(ϕ
s, ϕu, ξu; ε) = ξu +

∫ +∞

0
exp(−Luσ){1

2
PuH0(ϕ

s + εϕu, ϕs + εϕu)

+εPuR(ε;ϕs + εϕu)} dσ,

G3(ϕ
s, ϕu, ξu; ε) = ϕu(t) +

∫ +∞

t
exp(−Lu(σ − t)){1

2
PuH0(ϕ

s + εϕu, ϕs + εϕu)

+εPuR(ε;ϕs + εϕu)} dσ

Now setting G(ϕs, ϕu, ξu; ε) = (G1,G2,G3), Equations (16), (17) and (19) may be

written in compact form:

G(ϕs, ϕu, ξu; ε) = 0. (20)

For small ε, we wish to construct solutions of Equation (20) in the form

(ϕs(ε), ϕu(ε), ξu(ε); ε).

As all eigenvalues of Ls are negative less that λn+1, it follows from lemma 1 and lemma

2 that G1 is C∞ from PsCω,2 × PuCω,2 × Eu × IR to PsCω,2. Samely, G2 is C∞ from

PsCω,2×PuCω,2×Eu×IR to Eu. To prove that G is C∞, we need the following lemma:

Lemma 3:

G3 is C∞ from PsCω,2 × PuCω,2 × Eu × IR to PuCω,2

proof:

From lemma 1 and lemma 2 we get:

∀v ∈ Cω,2, ∀ε ∈ IR, H0(v, v) + εR(ε; v) ∈ Cω,0.

Thus:

∀t > 0, ∀v ∈ Cω,2, ‖H0(v, v) + εR(ε; v)‖2θ ≤ exp(−ωt)‖H0(v, v) + εR(ε; v)‖ω,0

As the linear operator −Lu generates an analytic semi-group on C2θ whose largest

eigenvalue is −λn < 0, and as Pu is a projector, we get ∀t > 0, ∀σ ≥ t, ∀v ∈ Cω,2,
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‖ exp(−Lu(σ−t))(PuH0(v, v)+εPuR(ε; v)‖2+2θ ≤ exp(−λn(σ−t)‖H0(v, v)+εR(ε; v)‖2θ

Therefore, there exists M(ω, λn) > 0 such that

∀t > 0, ∀(ϕs, ϕu, ε) ∈ PsCω,2 × PuCω,2 × IR,

‖
∫ +∞

t
exp(−Lu(σ − t)){1

2
PuH0(ϕ

s + εϕu, ϕs + εϕu) + εPuR(ε;ϕs + εϕu)} dσ‖2+2θ

≤ M exp(−ωt)‖H0(ϕ
s + εϕu, ϕs + εϕu) + εR(ε;ϕs + εϕu)‖ω,0

From lemma 1 and lemma 2, we finally get:

∀(ϕs, ϕu, ξu; ε) ∈ PsCω,2 × PuCω,2 × Eu × IR, G3(ϕ
s, ϕu, ξu; ε) ∈ PuCω,2.

Moreover as H0 and R are C∞, G3 is C∞
•

From our hypothesis on the spectrum of L0, when ε = 0, we may take:

ϕs(0) = ϕs
0 = exp(Lst)ξ

s ∈ PsCω,2 (21)

ϕu(0) = ϕu
0 = −

∫ +∞

t
exp(−Lu(σ − t))

1

2
PuH0(ϕ

s
0, ϕ

s
0)dσ ∈ PuCω,2 (22)

ξu(0) = ξu
0 = −1

2

∫ +∞

t
exp(−Luσ)PuH0(ϕ

s
0, ϕ

s
0)dσ ∈ Eu. (23)

Moreover it is clear that (ϕs
0, ϕ

u
0 , ξu

0 ; 0) verifies: G(ϕs
0, ϕ

u
0 , ξu

0 ; 0) = 0.

We may thus apply the Implicit Function Theorem to the mapping G. To this end,

we compute the derivative of G at (ϕs
0, ϕ

u
0 , ξu

0 ), G′
0. By construction:

G′
0 =













1 0 0

0 1 0

0 0 1













Note that the only extra diagonal term which can be non-zero is the partial derivative

of PuH0(ϕ
s + εϕu, ϕs + εϕu) with respect to ϕs. But,

∂(PuH0(ϕ
s + εϕu, ϕs + εϕu))

∂ϕs
(ϕs

0, ϕ
u
0 , ξu

0 ; 0) = PuH0(1, ϕ
s) = Pu(Lsϕ

s − 2ϕs) = 0.
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This operator being clearly invertible, we state the following result:

Theorem 5:

There exists ε0 > 0 and three unique C∞ functions:

ϕs : (−ε0, ε0) → PsCω,2 , ϕu : (−ε0, ε0) → PuCω,2 , ξu : (−ε0, ε0) → Eu, satisfying

i) ∀ε ∈ (−ε0, ε0), G(ϕs(ε), ϕu(ε), ξu(ε); ε) = 0.

ii) (ϕs(0), ϕu(0), ξu(0) = (ϕs
0, ϕ

u
0 , ξu

0 ).

Therefore for every ε ∈ (−ε0, ε0), for every ξs ∈ Es, if U = u0 + εξs + ε2ξu(ε),

then there exists a unique u ∈ C((0,+∞) ; X)
⋂ C1((0,+∞) ; C2θ([0, l])) solution of

Problem (1) and for every t > 0, ‖u(t) − u0‖2+2θ ≤ ρ exp(−ωt) •

5.3 Numerical approximation of the stable manifold

For small ε, we get easily a first order approximation of the stable manifold by taking

(ϕs(ε), ϕu(ε), ξu(ε)) ≈ (ϕs
0, ϕ

u
0 , ξu

0 ).

Clearly the vector space span (wi, i = n+1, n+2 ...) is included in Es. Therefore,

to build a numerical approximation of the stable manifold, one can take ξs as a finite

sum of these eigenvectors.

Let p ∈ IN, p > n + 1 and let (αs
k)k=n+1,..,p be a sequence of p − n real numbers.

Set ξs =
p

∑

k=n+1

αs
k wk and consider the decomposition of ξu

0 on the basis of Eu,

ξu
0 =

n
∑

j=0

βu
j wj.

Denoting for j = 0, ..n, Pj the projector of X on the eigenspace spanned by wj , we

get the analytical formula2,12:

for j = 0, .., n, βu
j =

1

2

p
∑

m=n+1
k=n+1

αs
k αs

m PjH0(wk, wm)
1

λk + λm − λj
(24)

The preceeding formula gives us an approximation of the stable manifold as follows:
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Theorem 6 (numerical approximation of the stable manifold):

Let ε ∈ (−ε0, ε0), small be given.

If U(x) = 1 + ε
p

∑

k=n+1

αs
k cos(

kπx

l
) + ε2

n
∑

j=0

βu
j cos(

jπx

l
), with βu

j given by the for-

mula (24) then there exists a unique global solution of Problem (8) converging to u0

as t tends to infinity, the rate of convergence being exponential •

Application to the detonation problem:

In our physical motivation, f is the function defined by f(s) = ln

[

exp(s) − 1

s

]

. Tak-

ing l < l0, such that 1 is the only strictly positive eigenvalue, i.e. n = 0, we denote

by r = l/l0. Choosing p = 1 and, for the sake of simplicity in the computation of βu
0 ,

supposing αs
1 = 1, one can take as initial condition, U(x) = 1 + ε cos(

πx

l
) + ε2βu

0 ,

with:

βu
0 =

1

2 − r2
[
−1

12r2
+

1 + c

2c
+

r2

4
] (25)

A numerical method for solving Problem (1) with this initial condition has been used

in 2, and a good agreement between the numerical computation of βu
0 and the analytic

formula (25) has been observed.

6. CENTER MANIFOLD CONFIGURATION

In this section we suppose that there exists a null eigenvalue and for the sake of

simplicity in the algebra, we suppose that this eigenvalue is the second thus l = l0.

We split the spectrum of L0 in σ+ = {λ0}, σ0 = {λ1 = 0} and σ− = {λj}j=2,3,...

We denote by Eu = span(u0) the unstable space, Ec = span(w1) the center space

and Pu (resp. Pc) the projection of X on Eu (resp. Ec). Set Ps = I − Pu − Pc and

Es = Ps X.

The existence of a center-unstable manifold in the semilinear case, Kelley14, Henry10
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(thm.6.2.1), has been adapted to the fully nonlinear case by Da Prato-Lunardi9

(thm.3.1) and Lunardi16 (thm.3.2).

Theorem 7 (center-unstable manifold):

There exists r > 0, and a Lipschitz continuous mapping, indefinitely differentiable

at u0:

h : Bc,u
2+2θ(u0, r) ⊂ Ec × Eu → Es, such that:

i) for every U ∈ X, verifying (PcU,PuU) ∈ Bc,u
2+2θ(u0, r) and PsU = h(PcU,PuU),there

exists a unique u ∈ C((0,+∞) ; X)
⋂ C1((0,+∞);C2θ [0, l]) solution of Problem (1)

and for every t > 0, Psu(t) = h(Pcu(t), Puu(t)).

ii) h(Pcu0, Puu0) = u0 and h′(Pcu0, Puu0) = 0.

The manifold W c,u = {Pcu+Puu+h(Pcu, Puu), (Pcu, Puu) ∈ Bc,u
2+2θ(u0, r) ⊂ Ec×Eu}

is called the center-unstable invariant manifold •

As usual, to investigate the stability of the equilibrium point u0 with respect

to the center-unstable manifold, we have to project Problem (8) on the three spaces

Es, Eu, Ec, and perform a Taylor serie expansion of F up to the third order. Setting

u = u0 + v, Problem (8) becomes:























vt = L0(v) +
1

2
H0(v, v) +

1

6
N0(v, v, v) + R(v)

v(0) = V

(26)

where V is small and N0(v, v, v) is the third derivative of F at u0, defined by:

for every v ∈ X, N0(v, v, v) = f (3)(0)(cvxx)3 + 6f ′′(0)c2v(vxx)2 +
v3

2
(27)

To simplify the notation, for every v ∈ X, we denote by:

G(v) = 1
2H0(v, v) + 1

6N0(v, v, v) + R(v).
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Denoting by Ls (resp. Lc, Lu) the restriction of L0 to Es (resp. Ec, Eu),

ϕs = Psv, ϕu = Puv and ϕc = Pcv, when projecting Problem (8) on Es, Ec and Eu

we get:



















































ϕs
t = Ls(ϕ

s) + PsG(v)

ϕu
t = ϕu + PuG(v)

ϕc
t = PcG(v)

(28)

But by Theorem 7, ϕs = h(ϕc, ϕu). Moreover h is determinated by 9:

h(ϕc, ϕu) =

∫ 0

−∞
exp(−σLs)PsG(h(ϕc, ϕu) + ϕc + ϕu) dσ (29)

In the semilinear case, Kelley14 proved that studying the stability of u0 with respect to

the center-unstable manifold is equivalent to study the stability of the 2-dimensional

dynamical system:























ϕu
t = ϕu + PuG(h(ϕc, ϕu) + ϕc + ϕu)

ϕc
t = PcG(h(ϕc, ϕu) + ϕc + ϕu)

(30)

Lunardi16 proved that this property stays true in the fully nonlinear case. Therefore,

we shall look for a local center manifold for Problem (30) whose existence has been

established by Kelley14. More precisely, there exists an open ball Bc
2+2θ(u0, rc) ⊂ Ec

and a Lipschitz continuous mapping indefinitely differentiable at u0,

τ : Bc
2+2θ(u0, rc) ⊂ Ec → Eu, satisfying τ(u0) = τ ′(u0) = 0 determined by:

ϕu(t = 0) =

∫ ∞

0
exp(−σ)PuG(h(ϕc, τ(ϕc) + ϕc + τ(ϕc) dσ = τ(ϕc(t = 0))(31)
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This local center manifold is defined by: Σ = {ϕc + τ(ϕc), ϕc ∈ Bc
2+2θ(u0, rc) ⊂ Ec}

Finally, inserting τ(ϕc) in Problem (30), we are led to the 1-dimensional ordinary

differential equation:

ϕc
t = PcG(h(ϕc, τ(ϕc) + ϕc + τ(ϕc) ≡ P(ϕc) (32)

As Ec is a one dimensional vector space, we parametrise it as ϕc = s(t)w1. Taking

into account that τ(u0) = τ ′(u0) = 0 and h′(u0, u0) = 0, we have:

τ(s w1) =
s2

2
τ ′′(0)(w1, w1) + o(s3) (33)

h(s w1, τ(s w1)) =
s2

2
h′′

1(0, 0)(w1, w1) + o(s3) (34)

Where h′′
1 stands for the second derivative of h with respect to the ”first variable”.

Substituting these expressions into the operator P defined by Equation (32) we get:

P(ϕc) =
s2

2
H0(w1, w1) +

s3

2
H0(w1, h

′′
1(0, 0)(w1, w1)) +

s3

2
H0(w1, τ

′′(0, 0)(w1, w1))

+
s3

6
N0(w1, w1, w1) + o(s4).

Thus Equation (32) may be simplified as:

stw1 =
s2

2
PcH0(w1, w1) +

s3

2
PcH0(w1, h

′′
1(0, 0)(w1, w1))

+
s3

2
PcH0(w1, τ

′′(0, 0)(w1, w1)) +
s3

6
PcN0(w1, w1, w1) + o(s4)

(35)

After some computations, we find PcH0(w1, w1) = 0.

But from Equations (29), (31), we obtain:

h′′
1(0, 0)(w1, w1) =

∫ 0

−∞
exp(−σLs)QH0(w1, w1) dσ (36)

and,

τ ′′(0, 0)(w1, w1) = −
∫ ∞

0
exp(−σI)PuH0(w1, w1) dσ = PuH0(w1, w1) (37)
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Symplifying by w1 in Equation (35), we finally obtain:

st =
s3

2 l0
(A1 + A2 + A3) + o(s4) (38)

with A1 = < H0(w1 ,

∫ 0

−∞
exp(−σLs)PsH0(w1, w1) dσ) , w1 >,

A2 = < H0(w1 , PuH0(w1, w1)) , w1 >,

A3 =
1

3
< N0(w1, w1, w1) , w1 >,

where < . , . > stands for the scalar product of L2(0, l).

After some algebraic computations, we get:

A1 + A2 + A3 = π

√

c f ′(0) A

48 c2 f ′(0)4
, with,

A = −2f ′(0)2 + 24cf ′(0)3 + 93c2f ′(0)4 + 2cf ′(0)f ′′(0) − 6c2f ′(0)2f ′′(0) + 4c2f ′′(0)2

−6f ′(0)f (3)(0)

Thus A1 + A2 + A3 has the same sign of A. Since the stability of u0 with respect

to the center-unstable manifold is equivalent of the stability of the zero state for the

ordinary differential equation (38), we can now conclude this study by:

Theorem 8 (stability with respect to the center-unstable manifold):

Suppose l = l0.

There exists r > 0 and a Lipschitz continuous mapping, indefinitely differentiable at

u0:

h : Bc,u
2+2θ(u0, r) ⊂ Ec × Eu → Es, such that we are in one of the two following

cases:

i) Suppose that A is strictly negative (stability).
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Then there exists ρ > 0 and ω > 0, such that:

for every U ∈ X, verifying (PcU,PuU) ∈ Bc,u
2+2θ(u0, r) and PsU = h(PcU,PuU), there

exists a unique u ∈ C([0,+∞) ; X)
⋂ C1([0,+∞);C2θ([0, l])) solution of Problem (1)

and for every t > 0, Psu(t) = h(Pcu(t), Puu(t)), and ‖u(t) − u0‖2+2θ ≤ ρ exp(−ωt).

ii) Suppose that A is strictly positive (instability).

Then there exists ρ > 0 and ω > 0, such that:

for every U ∈ X, verifying (PcU,PuU) ∈ Bc,u
2+2θ(u0, r) and PsU = h(PcU,PuU), there

exists a unique u ∈ C((−∞, 0] ; X)
⋂ C1((−∞, 0];C2θ([0, l])) backward solution of

Problem (1) and for every t < 0, Psu(t) = h(Pcu(t), Puu(t)), and ‖u(t)−u0‖2+2θ ≤
ρ exp(ωt) •

Remarks:

1) There exists Rc such that:

Bc
2+2θ(u0, Rc) ⊂ Bc

2+2θ(u0, rc) ⊂ Ec and Bc
2+2θ(u0, Rc)×τ(Bc

2+2θ(u0, rc)) ⊂ Bc,u
2+2θ(u0, r),

and the manifold Σ′ = {ϕc + τ(ϕc)+h(ϕc, τ(ϕc)), ϕc ∈ B2+2θ(0, Rc)} is an invariant

manifold for Problem (1). We have the following stability diagram:

c,u

s
E

uE

E

’Σ

W

Σ
c

Figure 3: Stability diagram
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2) Observe that from Equations (33) and (34), any w ∈ Σ′ has the local expansion:

w = sw1 +
s2

2
τ ′′(0)(w1, w1) +

s2

2
h′′

1(0, 0)(w1, w1) + o(s3).

After computations we get:

w(x) = s cos(
πx

l0
)+

s2

2
(−3

2
− 1

2cf ′(0)
+

f ′′(0)

2f ′(0)2
)+

s2

6
(−3

4
+

1

4cf ′(0)
+

f ′′(0)

2f ′(0)2
) cos(

2πx

l0
)

+o(s3)

3) Recall that in our detonation problem, f is the function defined by f(s) = ln

[

exp(s) − 1

s

]

.

Thus:

A = −1

2
+ c

37

12
+ c2 823

144

Let c∗ be the positive root of A = 0, i.e. c∗ =
−444 + 36

√
355

1646
≈ 0.103057

The stability of u0 occurs if 0 < c < c∗ and the instability occurs if c > c∗. Thus in

our test problem c = 0.268, the ZND wave is not only unstable but also unstable

with respect to the center-unstable manifold.
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thesis, Université Claude Bernard-Lyon I, Lyon (1993).

[13] D. Henry, Geometric theory of semilinear parabolic equations, Lecture notes in

Math. 408, Springer-Verlag, (1981).

[14] A. Kelley, The stable, center-stable, center, center-unstable, unstable manifolds,

J.Diff.Equ.3, 546-570, (1967).

[15] A. Lunardi, Stability in fully nonlinear parabolic equations, Preprints di

Matematica 136, Scuola Normale Superiore, Pisa, (1992).

[16] A. Lunardi, Stable, unstable, and center manifolds in fully nonlinear parabolic

equations, to appear in Proc. Conf. ”Semigroups of Operators and Applications”,
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