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Abstract. The existence of the solution to an elliptic system arising in electro-
chemical modelling is proven here. The elliptic system of interest here is composed
of two di↵usion equations; one of them is posed with a Dirichlet condition which
couples it to the other equation on an interface, and a Signorini condition on one of
the boundaries. The other one is posed with Neumann conditions, which are also
coupled at an interface. The existence of the solution is proven by using Schauder’s
fixed point theorem, which requires some previous local regularity properties of the
solution to the “Signorini problem”.

1. Introduction. The modelling of an electrochemical reacting interface
[5] gives rise to the following system of equations posed over the physical
domain ⌦ represented in Figure 1. The domain ⌦A represents the electrode
and is defined by ⌦A =]0, 1[⇥]0, 1[, the domain ⌦B represents the electrolyte
and is defined by ⌦B =]0, xmax

1 [⇥]xmin
2 , 0[. Let ⌦ = ⌦A [ I [ ⌦B, where

I = {(x1, 0), x1 2]0, 1[}. The boundary @⌦ of ⌦ is composed of seven parts:

�1
A = {(0, x2), x2 2]0, 1[}, �2

A = {(x1, 1), x1 2]0, 1[},
�3

A = {(1, x2), x2 2]0, 1[}, �1
B = {(0, x2), x2 2]xmin

2 , 0[},
�2

B = {(x1, x
min
2 ), x1 2]0, xmax

1 [}, �3
B = {(xmax

1 , x2), x2 2], 0[},
�4

B = {(x1, 0), x1 2]1, xmax
1 [}.
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Figure 1. Domain of study

The electrochemical phenomena which need to be modelled are:
– The di↵usion of oxygen in the electrode ⌦A; the oxygen concentration

in ⌦A is denoted by u, and the oxygen flux is proportional to ru.
– The conduction of electrical (ionic or electronic) current in both elec-

trode ⌦A and electrolyte ⌦B. The electrical current is given by Ohm’s law
with respect to the electrical potential �. The conservation of the oxygen in
⌦A and the conservation of electrical current in ⌦B yield equations (4) and
(8) below. These equations are coupled by Faraday’s law, which states the
conservation of electric charges at the interface between ⌦A and ⌦B (con-
ditions (11) and (14) below). They are also coupled through Nernst’s law,
which expresses the potential jump at the electrolyte with respect to the
concentration. A Signorini boundary condition (see (7) below) is written on
one of the boundaries of ⌦A to account for the fact that the transmission of
oxygen through the electrode wall is limited both for the concentration and
concentration flux. For reasons of symmetry, all fluxes are null at x = 0 and
x = xmax

1 (conditions (5), (10), (13)).
Let a, cA, cB 2 R?+ and b 2 H1(�3

A) such that b � 0 and b(0) = 0.
In order to express Nernst’s law, let T be a function defined from L2(I) to
H2(I) such that

0  T (')(s)  a 8' 2 L2(I), for a.e s 2 I, (1)

9M 2 R?, kT (')kH2(I)  M 8' 2 L2(I), (2)

T is continuous from L2(I) to H1(I). (3)

With these notations, the conservation equations, interface and boundary
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conditions lead to seeking u : ⌦A ! R and � : ⌦ ! R satisfying

��(u(x)) = 0, x 2 ⌦A (4)

ru(s) · n = 0, s 2 �j
A (j = 1, 2) (5)

u(s) = T (�A|I � �B |I )(s), s 2 I (6)

u(s)  a,

ru(s) · n  b(s),
(u(s)� a)(ru(s).n� b(s)) = 0,

9>=
>; s 2 �3

A, (7)

��(�i(x)) = 0, x 2 ⌦i (i = A,B) (8)

�A(s) = 0, s 2 �2
A (9)

r�A(s) · n = 0, s 2 �j
A (j = 1, 3) (10)

r�A(s) · nI = cAru(s) · nI , s 2 I, (11)

�B(s) = 0, s 2 �2
B (12)

r�B(s) · n = 0 s 2 �j
B (j = 1, 3, 4) (13)

r�B(s) · nI = cBru(s) · nI , s 2 I, (14)

where �i denotes the restriction of � to the domain ⌦i (i = A,B) and nI is
the unit vector normal to I external to the domain ⌦A.

Note that in fact, Nernst’s law, which is an experimental law, gives the
ideal potential jump for an electrochemical reaction with a chemical species
of concentration u as:

u = T (�A|I � �B |I ) a.e. on I,

where T is continuous from R to [0, a]. However, with an argument similar
to that of [3], we may replace the pointwise dependency of u on � through
a dependency of u at point x with respect to the values of � in the neigh-
borhood of x. Such a model may be obtained by replacing, for instance, T
by T defined from L2(I) to H2(I) such that:

T (')(s) =
Z

I
T (')(y) ⇢h( (s)� y)dy a.e. s 2 I, (15)
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where ⇢h is the classical mollifier defined by

⇢h(x) =
1
h
⇢(

x

h
) 8x 2 R,

with ⇢ 2 C1c (R, R?) such that supp ⇢ ⇢ [�1, 1], and
R

R ⇢(x)dx = 1; thus
⇢h 2 C1c (R, R?), supp ⇢h ⇢ [�h, h] and

R
R ⇢h(x)dx = 1; and  is defined by

 (x) = x� 2hx + h 8x 2 I.
The function T thus defined clearly satisfies assumptions (1)–(3)). More-

over, we have

T (')(0) = T (')(1) = 0 and T (')0(0) = T (')0(1) = 0. (16)

The aim of this paper is to prove the existence of a solution to the system
(4)–(14). In order to do so, we need to define in which sense this solution
may be obtained. Let us first define the adequate functional spaces and
(bi)linear forms for i = A or i = B:

H1
0,2(⌦i) = {v 2 H1(⌦i), v|�2

i

= 0 a.e}, (17)

Ai(�,  ) =
Z

⌦i

r�(x)r (x)dx, 8�,  2 H1(⌦i), (18)

Lu,i( ) = ci

Z
I
ru(s) · n |I (s) ds, (19)

8 2 H1(⌦i), 8u 2 H1(⌦A) s.t. ru · n 2 L2(I),

K' = {v 2 H1(⌦A), v|I = T (') a.e, v|�3
A

 a a.e}, 8' 2 L2(I),
(20)

L(v) =
Z

�3
A

b(s)v|�3
A

(s)ds, 8v 2 H1(⌦A), (21)

where v|I designs the image of v 2 H1(⌦i) (i = A or B), by the trace
operator defined from H1(⌦i) to L2(I).

Consider the following variational problem:⇢ �i 2 H1
0,2(⌦i) (i = A,B), satisfying :

Ai(�i,  ) = Lu,i( ), 8 2 H1
0,2(⌦i) (i = A,B);

(22)

8><
>:

u 2 K', satisfying :
AA(u, v � u) � L(v � u), 8v 2 K',

with ' = �A|I � �B |I .

(23)
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We shall prove in the following section that, under some regularity assump-
tions, Problem (4)–(14) is equivalent to Problem (22)–(23).

The existence of the solution to the problem (22)-(23) will then be proven
by using the Schauder fixed point theorem. Our proof is inspired by the proof
of the existence of the solution to another coupled problem (see [4]). Here,
however, the proof of the continuity of the fixed point operator requires some
previous regularity results on the solution of the “Signorini problem”, i.e.,
Problem (23) with a given '; these results are proven in Section 3. Section
4 is devoted to the actual proof of the existence result, which includes the
construction of the fixed point operator and the properties which are to be
satisfied in order that the assumptions in Schauder’s theorem hold.

2. The variational problem.

Proposition 2.1. Let ⌦ = ⌦A [ I [ ⌦B, with ⌦A =]0, 1[⇥]0, 1[, ⌦B =
]0, xmax

1 [⇥]xmin
2 , 0[, and I = {(x1, 0), x1 2]0, 1[}. Let a, cA, cB 2 R?+ and

b 2 H1(�3
A) such that b � 0 and b(0) = 0. Let T be a function defined from

L2(I) to H2(I) satisfying the assumptions (1)–(3) and (16). Assume that
� 2 L2(⌦) is such that �i in C2(⌦i) for i = A,B; and u in C2(⌦A), then
(u, �) is solution to variational problem defined by (17)–(23) if and only if
(u, �) satisfies equations (4)–(14).

Proof of Proposition 2.1. Assume u such that u 2 C2(⌦A), satisfying
equations (4)–(7). Thanks to equation (6) and to the first relation in (7),
u 2 K' with

' = �A|I � �B |I .

Let v 2 K', from equation (4), we obtainZ
⌦A

ru(x)r(v � u)(x)dx�
Z
@⌦A

ru(s) · n (v � u)(s) ds = 0.

Using equation (5) and the fact that u, v are in K', yieldsZ
⌦A

ru(x)r(v � u)(x) dx =
Z

�3
A

ru(s) · n (v � u)(s) ds.

Adding and subtracting b and a in the right-hand side, yieldsZ
⌦A

ru(x)r(v � u)(x) dx =
Z

�3
A

(ru(s) · n� b(s)) (v(s)� a) ds

+
Z

�3
A

(ru(s) · n� b(s)) (a� u(s)) ds +
Z

�3
A

b(s) (v � u)(s) ds.
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Since v 2 K', v|�3
A

� a  0; from conditions (7) on u, it follows that

Z
⌦A

ru(x)r(v � u)(x)dx �
Z

�3
A

b(s) (v � u)(s) ds.

Hence, u is solution to the problem (23). The proof that � such that �i 2
C2(⌦i) i = A, B satisfying the equations (8)–(14) also satisfies (22) is
straightforward.

Reciprocally, let (u, �) satisfying the regularity assumptions u 2 C2(⌦A)
�i in C2(⌦i) for i = A,B and the variational problem defined by (17)–(23).
Let us show here that u satisfies the third equation in Signorini’s conditions
(7). Our proof is inspired by Baiocchi and Capelo’s (see [1]), for a similar
problem with a Signorini boundary condition on the whole boundary.

Let ��a = {s 2 �3
A such that u(s) < a}. Notice that the third equation of

(7) is equivalent to ru · n = b, on ��a . Let g be a function in C1c (��a ), and
denote by g̃ the extension by zero of g on �3

A and 'g a function of H1(⌦A)
such that 'g |�3

A

= g̃ a.e. and 'g |I = 0 almost everywhere.

Let µ � 0 be defined by

µ =
infess(a� u(s), s 2 supp g)

sup( |g(s)|, s 2 ��a )
if g 6⌘ 0, µ = 0 if g ⌘ 0.

Note that µ is defined for any u 2 H1(⌦A).
Let v1 = u � µ'g and v2 = u + µ'g, then v1 and v2 2 K' (with ' =

�A|I � �B |I ); taking v1 (respectively v2) in equation (23), yields
Z

��a

(ru(s) · n� b(s))g(s)ds  0

(respectively
R

��a
(ru(s) · n� b(s))g(s)ds � 0), and therefore,

Z
��a

(ru(s) · n� b(s))g(s) ds = 0 8g 2 C1c (��a ),

which, in turn, yields conditions (7). The other equations (4)–(14) of the
strong formulation are easy to obtain. ⇤

In order to use the Schauder fixed point theorem (see, for instance, [7]),
we have to study the continuity of a fixed point operator. This requires a
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previous regularity result for the solution to the Signorini problem (4)–(7)
which are studied in the next section.

3. A regularity property of the solution of the “Signorini prob-
lem.” Let ⌦A =]0, 1[⇥]0, 1[, a 2 R?+, b 2 H1(�3

A) such that b(x2) � 0
8x2 2 �3

A and b(0) = 0. Let  : I 7! R be defined by

 2 H2(I), 0   (x1)  a 8x1 2 I,

 (0) =  (1) = 0 and  0(0) =  0(1) = 0.
(24)

Let u be the unique solution to the following problem:8<
:

u 2 K = {v 2 H1(⌦A), v|I =  a.e, v|�3
A

 a a.e}, satisfying :R
⌦A
ru(x) ·r(v � u)(x)dx �

R
�3

A
b(s)(v � u)|�3

A

(s)ds, 8v 2 K .
(25)

We shall prove here the local H2 regularity of the solution u to (25). Let us
start by proving the following estimate:

Proposition 3.1. Let ⌦A =]0, 1[⇥]0, 1[, a 2 R?+, b 2 H1(�3
A) such that

b(x2) � 0 8x2 2 �3
A and b(0) = 0. Let  be a function defined from I to R

satisfying the assumptions (24). Let u be the unique solution to (25), there
exists C > 0 independent of u and of  , such that

kukH1(⌦A)  C
⇣
k kH1(I) + kbkL2(�3

A)

⌘
. (26)

Proof of Proposition 3.1. Define, for a.e. (x1, x2) 2 ⌦A, u0
 (x1, x2) =

 (x1). Remark that, by assumptions (24), u0
 2 K . Taking v = u0

 in (25),
yields: Z

⌦A

| r(u0
 � u)(x) |2 dx


Z

⌦A

ru0
 ·r(u0

 � u)(x)dx�
Z

�3
A

b(u0
 � u)|�3

A

(s)ds;

since u0
 � u 2 H1

0,I(⌦A), by Poincaré’s inequality and by continuity of the
trace operator from H1(⌦A) to L2(�3

A), there exists C > 0 such that

ku0
 � ukH1(⌦A)  C(ku0

 kH1(⌦A) + kbkL2(�3
A)).

which, in turn, yields (26). ⇤
Let us now prove the following maximum principle on the solution u of

(25).
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Lemma 3.1. Let ⌦A =]0, 1[⇥]0, 1[, a 2 R?+, b 2 H1(�3
A) such that b(x2) � 0

8x2 2 �3
A and b(0) = 0. Let  be a function defined from I to R satisfying the

assumptions (24). Let u be the solution to Problem (25), then u(x1, x2) � 0
for a.e. (x1, x2) 2 ⌦A.

Proof of Lemma 3.1. Since ��u = 0 in L2(⌦A), multiplying by u� =
� infess(0, u), integrating the product and using the Green formula, yields:

Z
⌦A

ru(x) ·ru�(x)dx�
Z

�b

b(s)u�|�b
(s)ds = 0,

where �b = {(x1, x2) 2 �3
A, s.t. ru(x1, x2) ·n = b}, (recall that u�|�a

= 0 on
�a = �/�b = {(x1, x2) 2 �3

A, s.t. u(x1, x2) = a}, and that ru · n = 0 on
�1

A [ �2
A).

Since u� 2 H1
0,I(⌦A), there exists C > 0 such that

ku�kH1(⌦)  �C

Z
�b

b(s)u�|�b
(s)ds,

However, u� � 0 and b � 0 a.e., hence u� = 0 a.e. on ⌦A, which concludes
the proof of Lemma 3.1. ⇤

The following H2 estimate on u holds:

Proposition 3.2. Let ⌦A =]0, 1[⇥]0, 1[, ⌦A/2 =]0, 1[⇥]0, 1
2 [, a 2 R?+ and

b 2 H1(�3
A) such that b(x2) � 0 8x2 2 �3

A and b(0) = 0. Let  be a function
defined from I to R satisfying the assumptions (24). Let u be the solution to
Problem (25), then u 2 H2(⌦A/2), and there exists C > 0 independent of u
and of  such that

kukH2(⌦A/2)  C
⇣
kukH1(⌦A) + k kH2(I) + kbkH1(�3

A)

⌘
. (27)

This estimate and the continuity of the trace operator from H2(⌦A/2) to
L2(I) yields the following estimate on the trace of the normal derivative of u,
which is crucial for the proof of the existence of the solution to the original
coupled problem.

Corollary 3.1. Let ⌦A = (0, 1) ⇥ (0, 1), �3
A = {(1, x2), x2 2 (0, 1)}, I =

{(x1, 0), x1 2 (0, 1)}, a 2 R?+ and b 2 H1(�3
A) such that b(x2) � 0 8x2 2

�3
A and b(0) = 0. Let  be a function defined from I to R satisfying the
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assumptions (24). Let u be the solution to problem (25), then ru ·n 2 L2(I),
and there exists C > 0 independent of u and of  such that

kru · nkL2(I)  C
⇣
kukH1(⌦A) + k kH2(I) + kbkH1(�3

A)

⌘
.

Proof of Proposition 3.2. The proof of Proposition 3.2 consists in two
steps. First, a symmetrization of the domain ⌦A is performed, in order to
deal with the corners (x1 = 0, x2 = 0) and (x1 = 1, x2 = 0). A function w
is constructed on the symmetrized domain, the restriction to ⌦A of which is
equal to u.

The local H2 regularity of w on the symmetrized domain is then shown
by the method of the translations, due to Niremberg, see [2].

Step 1: Symmetrization. Let ⌦̃A =]0, 1[⇥]� 1, 0[ and define ũ : ⌦̃A 7! R
by

ũ(x1, x2) = �u(x1,�x2) + 2 (x1) a.e. (x1, x2) 2 ⌦̃A;

note that, if u is regular enough, one has ũ(x1, 0) = u(x1, 0) and

@u

@x2
(x1, 0) =

@ũ

@x2
(x1, 0)

for a.e. x1 2]0, 1[.
Let ⌦ = ⌦A [ ⌦̃A [ I and define w : ⌦ 7! R by

w(x1, x2) = u(x1, x2) for a.e. (x1, x2) 2 ⌦A [ I, and

w(x1, x2) = ũ(x1, x2) for a.e. (x1, x2) 2 ⌦̃A.
(28)

Let �̃3
A = {(1, x2), x2 2]�1, 0[} and �3 = �3

A[�̃3
A[(1, 0). Define b̃ 2 L2(�3)

by

b̃(s) = b(s) for a.e. s 2 �3
A and b̃(s) = �b(�s) for a.e. s 2 �̃3

A. (29)

Let f 2 L2(⌦) such that f(x1, x2) = 0 for a.e. (x1, x2) 2 ⌦A and f(x1, x2) =
�2 00(x1) for a.e. (x1, x2) 2 ⌦̃A. We shall now use the following result:
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Lemma 3.2. Let ⌦ = ⌦A [ ⌦̃A [ I, with ⌦A =]0, 1[⇥]0, 1[, ⌦̃A =]0, 1[⇥]�
1, 0[ and I = {(x1, 0), x1 2]0, 1[}. Let �3 = �3

A [ �̃3
A [ (1, 0), with �3

A =
{(1, x2), x2 2]0, 1[} and �̃3

A = {(1, x2), x2 2] � 1, 0[}. Let a 2 R?+ and
b̃ 2 L2(�3

A) be defined by (29). Let  be a function defined from I to R
satisfying the assumptions (24). Let w be the function defined by (28), then
w satisfies the following problem

8>>>>><
>>>>>:

w 2 K = {v 2 H1(⌦), v|�3
A

 a, v|�̃3
A

� �a a.e}, satisfying :Z
⌦
rw(x) ·r(v � w)(x)dx �

Z
�3

b̃(s)(v � w)|�3 (s)ds

+
Z

⌦
f(x)(v � w)(x)dx, 8v 2 K

(30)

Proof of Lemma 3.2. Let us first show that w 2 K. Since ũ(x1, 0) =
u(x1, 0) for a.e. x1 2]0, 1[, it is easily seen that w 2 H1(⌦); moreover,
one has, for a.e. x2 2] � 1, 0[: w(1, x2) = ũ(1, x2) = �u(1,�x2). Hence
w|�̃3

A

� �a a.e. and w 2 K. Let us now show that, for any v 2 K, w satisfies
(30). For v 2 K, define, for a.e. (x1, x2) 2 ⌦A, ṽ(x1, x2) = v(x1,�x2).
Integrating by part and thanks to a change of variable, one has

Z
⌦̃A

rũ(x) ·r(v � ũ)(x)dx

=
Z 1

0

Z 1

0
ru(x1, x2) ·r(�ṽ(x1, x2)� u(x1, x2) + 2 (x1))dx1dx2

�2
Z 0

�1

Z 1

0
 00(x1)(v � ũ)(x1, x2)dx1dx2.

Therefore, defining v(x1, x2) = v�ṽ
2 (x1, x2) +  (x1) for a.e. (x1, x2) 2 ⌦A,

one has Z
⌦
rw(x) ·r(v � w)(x)dx

= 2
Z 1

0

Z 1

0
ru(x1, x2) ·r(v(x1, x2)� u(x1, x2))dx1dx2

�2
Z 0

�1

Z 1

0
 00(x1)(v � ũ)(x1, x2)dx1dx2,
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since v|⌦A
2 K , inequality (25) with v = v|⌦A

together with the above
equality yields

Z
⌦
rw(x) ·r(v � w)(x)dx

� 2
Z 1

0
b(x2)(v � u)(1, x2)dx2 � 2

Z 0

�1

Z 1

0
 00(x1)(v � ũ)(x1, x2)dx1dx2,

that is,
Z

⌦
rw(x) ·r(v � w)(x)dx �

Z 1

0
b̃(x2)(v � u)(1, x2)dx2

+
Z 0

�1
b̃(x2)(v � ũ)(1, x2)dx2 � 2

Z 0

�1

Z 1

0
 00(x1)(v � ũ)(x1, x2)dx1dx2,

which concludes the proof of Lemma 3.2.
Remark. Note that, if w is regular enough, then it satisfies the following
problem: 8>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

��w = 0, in ⌦,

rw(s) · n = 0, s 2 �1, �2
A, �̃2

A,

w(s)  a, s 2 �3
A,

rw(s) · n  b(s), s 2 �3
A,

(w(s)� a)(rw(s).n� b(s)) = 0, s 2 �3
A,

w(s) � �a, s 2 �̃3
A,

rw(s) · n � �b(s), s 2 �̃3
A,

(w(s) + a)(rw(s).n + b(s)) = 0, s 2 �̃3
A,

(31)

with �̃2
A = {(x1,�1), x1 2]0, 1[} and �1 = {(0, x2), x2 2]� 1, 1[}.

Step 2: Method of translations. Let ⌦1/2 =]0, 1[⇥]� 1/2, 1/2[; we now
show that w 2 H2(⌦1/2) and give an estimate of kwkH2(⌦1/2). We use here
the method of translations, which was developed by Brezis [2] to show the
regularity of the solution of the Laplace operator, and can also be found
applied to a problem with a Signorini boundary condition on the whole
boundary of the domain in [6].
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Let ' 2 C1c (R2) such that ' ⌘ 1 on ⌦1/2, 0  '  1 on R2 and
supp' ⇢ R⇥]� 3

4 , 3
4 [. Let h > 0 and H = (0, h). Let us show that, for h

small enough, there exists " > 0 depending only on H such that

v = w + "D�H('DH(w)) 2 K, (32)

where

D±⌘(x) = ±w(x± ⌘)� w(x)
|⌘| 8⌘ 2 R2, for a.e. x 2 ⌦1/2,

|⌘| denoting the Euclidean norm of ⌘. For h < 1
4 , v is clearly in H1(⌦). Let

us show that, for an adequate choice of ", v is such that v|�̃3
A

� �a a.e. Let
x2 2]� 1, 0[, then

v(1, x2) + a = (w(1, x2) + a)
�
1� "

h2
('(1, x2) + '(1, x2 � h)

�
+

"

h2
('(1, x2 � h)(w(1, x2 � h) + a) + '(1, x2)(w(1, x2 + h) + a)).

Remark that (w(1, x2) + a)(1� "
h2 ('(1, x2) + '(1, x2 � h)) is positive if

"  h2

2 ; hence, let " = h2

2 .
As h > 0,

'(1, x2 � h) (w(1, x2 � h) + a) � 0 for a.e. x2 2]� 1, 0[

and
'(1, x2) (w(1, x2 + h) + a) � 0 for a.e. x2 2]� 1,�h[.

By Lemma 3.1, u(x1, x2) � 0 for a.e. (x1, x2) 2 ⌦A, and therefore,

w(1, x2 + h) + a � 0 8x2 2]� h, 0[.

Hence, v|�̃3
A

� �a a.e.; in the same way, one may prove that v|�3
A

 a a.e.

Then, the function v, defined in (32) with h < 1
4 and " = h2

2 , is in K.
Hence it may be taken as a test function in (30)

"

Z
⌦
rw(x)r(D�H('DHw))(x)dx

�"
Z

�3
b̃(s)D�h('Dhw|�3 )(s)ds + "

Z
⌦

f(x)(D�H('DHw))(x)dx,
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and thereforeZ
⌦
r(DHw)(x) ·r('DHw)(x)dx


Z

�3
'Dhb̃(s)Dhw|�3 (s)ds +

Z
⌦
'DHf(x)DHw(x)dx. (33)

Let ✓ 2 C1c (R2) such that ✓ � 0 and ✓2 = ', (33) becomes
Z

⌦
|✓r(DHw)(x)|2dx + 2

Z
⌦
✓(x)DHw(x)r✓(x) ·r(DHw)(x)dx

 k✓DHwkH1(⌦)(C1k✓Dhb̃kL2(�3) + k✓DHfkH�1(⌦)), (34)

where C1 is the continuity constant of the trace operator from H1(⌦) to
L2(�3). noticing that

k✓DHwk2H1(⌦) =
Z

⌦
|✓(x)DHw(x)|2dx +

Z
⌦
|r✓(x)DHw(x)|2dx (35)

+
Z

⌦
|✓(x)r(DHw)(x)|2dx + 2

Z
⌦
✓(x)DHw(x)r✓(x) ·r(DHw)(x)dx,

from (34) and (35), one has

k✓DHwk2H1(⌦) 
Z

⌦
|✓(x)DHw(x)|2dx +

Z
⌦
|r✓(x)DHw(x)|2dx (36)

+ k✓DHwkH1(⌦)

⇣
Ck✓DH b̃kL2(�3) + k✓DHfkH�1(⌦A)

⌘
.

The right hand side of (36), will now be estimated thanks to the following
lemma, [2], p. 153.

Lemma 3.3. Let ⌦ be an open set of RN , u 2 H1(⌦), ! an open subset of
⌦ and let ⌘ 2 RN such that 8x 2 !, x + ⌘ 2 !, then

kD⌘ukL2(!)  krukL2(⌦).

Noticing that
Z

⌦
|✓(x)DHw(x)|2dx 

Z
supp✓\⌦

|DHw(x)|2dx,
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with
supp ✓ ⇢ R⇥]� 3

4 , 3
4 [.

and since h < 1
4 , applying Lemma 3.3 yields

Z
supp✓\⌦

|DHw(x)|2dx  krwk2L2(⌦). (37)

Similarly, one hasZ
⌦
|r✓(x)DHw(x)|2dx  C2krwk2L2(⌦), (38)

with C2 > 0 a constant depending only on ✓. Since b̃ 2 H1(�3
A), b̃ 2 H1(�̃3

A)
and b̃ is continuous at 0, one has b̃ 2 H1(�3). Thus, by Lemma 3.3,

Z
�3
|✓|�3(t)Dhb̃(t)|2dt  krb̃kL2(�3). (39)

Now, noting that

k✓DHfkH�1(⌦)  sup
 2H1(⌦)

|
R
supp✓ f(x)DH (x)dx |

k kH1(⌦)
,

and using Lemma 3.3, one obtains

k✓DHfkH�1(⌦)  kfkL2(⌦). (40)

Then, inequality (36) becomes, thanks to (37), (38), (39) and (40),

k✓DHwk2H1(⌦)  (1 + C2)krwkL2(⌦)

+ k✓DHwkH1(⌦)

⇣
C1kb̃kH1(�3) + kfkL2(⌦)

⌘
.

Let

C = (1 + C2)krwkL2(⌦), B = C1kb̃kH1(�3) + kfkL2(⌦), X = k✓DHwk2H1(⌦).

Since X2 �BX � C  0 one has

X  B + (B2 + 4C) 1
2

2
 C

1
2 + B,
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and therefore,

k✓DHwkH1(⌦) 
�
(1 + C2)krwkL2(⌦)

� 1
2 + C1kb̃kH1(�3) + kfkL2(⌦),

using the definitions of w, b̃ and f , yields

k✓DHwkH1(⌦) 
�
(1 + C2)(2kukH1(⌦A) + k kH1(I))

� 1
2

+ 2C1kbkH1(�3
A) + 2k kH2(I).

Thus, there exists C > 0, independent of  and u (C = 3+2C2 +2C1), such
that

kDHwkH1(⌦1/2) C
⇣
kukH1(⌦A) + k kH2(I) + kbkH1(�3

A)

⌘
. (41)

Let us now show that w 2 H2(⌦1/2), i.e., there exists gi,j 2 L2(⌦1/2) such
that
Z

⌦1/2

w(x)
@2'

@xi@xj
(x) dx =

Z
⌦1/2

gi,j(x)'(x) dx 8' 2 C1c (⌦1/2); i, j = 1, 2.

Let ' in C1c (⌦1/2), using the Green formula

Z
⌦1/2

w(x)D�H(
@'

@xi
)(x) dx =

Z
⌦1/2

DH(
@w

@xi
)(x)'(x) dx, i = 1, 2,

hence,

���
Z

⌦1/2

w(x)D�H(
@'

@xi
)(x) dx

���  kDH(
@w

@xi
)kL2(⌦1/2)k'kL2(⌦1/2), i = 1, 2.

Using (41) and letting h tend to 0, yields

���
Z

⌦1/2

w(x)
@2'

@xi@x2
(x)dx

���
 C

⇣
kukH1(⌦A) + k kH2(I) + kbkH1(�3

A)

⌘
k'kL2(⌦1/2),

8' 2 C1c (⌦1/2); i = 1, 2. (42)
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Since ��w = f in D0(⌦1/2), one has

�
Z

⌦1/2

w(x)
@2'

@2x1
(x)dx

=
Z

⌦1/2

w(x)
@2'

@2x2
(x)dx +

Z
⌦1/2

f(x)'(x)dx, 8' 2 C1c (⌦1/2),

hence, there exists C0 > 0, independent of u and  (C0 = C + 2), such that
���
Z

⌦1/2

w(x)
@2'

@xi@xj
(x)dx

���
 C0

⇣
kukH1(⌦A) + k kH2(I) + kbkH1(�3

A)

⌘
k'kL2(⌦1/2),

8' 2 C1c (⌦1/2); i, j = 1, 2. (43)

Consider the application

Fi,j : ' 7!
Z

⌦1/2

w(x)
@2'

@xi@xj
(x)dx,

from C1c (⌦1/2) to R. Since Fi,j is continuous on C1c (⌦1/2), we can extend
by density this application to Gi,j 2 (L2(⌦1/2))?, such that

Fi,j(') = Gi,j(') 8' 2 C1c (⌦1/2).

By the Riesz Theorem, there exists gi,j 2 L2(⌦1/2) such that

Gi,j(') =
Z

⌦1/2

gi,j(x)'(x)dx

for any ' 2  L2(⌦1/2), and therefore
Z

⌦1/2

w(x)
@2'

@xi@xj
(x)dx =

Z
⌦1/2

gi,j(x)'(x)dx 8' 2 C1c (⌦1/2); i, j = 1, 2,

since gi,j = @2w
@xi@xj

, w 2 H2(⌦1/2). Moreover, the following estimate holds

k @2w

@xi@xj
kL2(⌦1/2)  C0

⇣
kukH1(⌦A) + k kH2(I) + kbkH1(�3

A)

⌘
, i, j = 1, 2.

(44)
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To conclude the proof of Proposition 3.2, we recall that w = u in ⌦A, hence
u 2 H2(⌦A/2) with ⌦A/2 =]0, 1[⇥]0, 1

2 [, and there exists a constant C > 0
independent of u and  such that

kukH2(⌦A/2)  C
⇣
kukH1(⌦A) + k kH2(I) + kbkH1(�3

A)

⌘
.

4. Existence of the solution.

Theorem 4.1. Let
⌦ = ⌦A [ I [ ⌦B,

with ⌦A =]0, 1[⇥]0, 1[, ⌦B =]0, xmax
1 [⇥]xmin

2 , 0[, and I = {(x1, 0), x1 2
]0, 1[}. Let a, cA, cB 2 R?+ and b 2 H1(�3

A) such that b � 0 and b(0) = 0.
Let T be a function defined from L2(I) to H2(I) satisfying the assumptions
(1)–(3) and (16). There exists (u, �) satisfying (17)–(23).

This theorem is proven thanks to Schauder’s theorem (see e.g. [7]):

Theorem 4.2. Let E be a Banach space and F an application from E
to E, continuous, compact and such that there exists R > 0 such that
F (BE(0, R)) ⇢ BE(0, R) (where BE(0, R) = {u 2 E s.t. kukE  R}),
then F admits a fixed point u 2 BE(0, R), such that u = F (u).

In order to use Schauder’s theorem, let us first write problem (22)–(23)
as a fixed point problem.

4.1. Construction of the fixed point operator. For a given ' 2
L2(I), there exists, by a theorem due to Stampacchia (see [2] p. 83) a unique
solution u' 2 H1(⌦A) to

⇢
u' 2 K',

AA(u', v � u') � L(v � u'), 8v 2 K'
(45)

with
K' = {v 2 H1(⌦A), v|I = T (') a.e, v|�3

A

 a a.e},

AA(�,  ) =
Z

⌦A

r�(x)r (x)dx 8�,  2 H1(⌦i),

and
L(v) =

Z
�3

A

b(s)v|�3
A

(s)ds 8v 2 H1(⌦A).
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Remark. The set K' is non empty, thanks to the property (1) of the
function T . Take, for instance, u0

'(x1, x2) = T (')(x1), 8(x1, x2) 2 ⌦A then
u0
' 2 K'.
Consider now the following problem:(

�i 2 H1
0,2(⌦i) (i = A,B),

Ai(�i,  ) = Lu',i( ), 8 2 H1
0,2(⌦i) (i = A,B);

(46)

with
Ai(�,  ) =

Z
⌦i

r�(x)r (x)dx, 8�,  2 H1(⌦A),

and

Lu,i( ) = ci

Z
I
ru(s) · n |I (s) ds, 8 2 H1(⌦i), 8u 2 H1(⌦A)

such that ru · n 2 L2(I).

Lemma 4.1. Let
⌦ = ⌦A [ I [ ⌦B,

with ⌦A =]0, 1[⇥]0, 1[, ⌦B =]0, xmax
1 [⇥]xmin

2 , 0[, and I = {(x1, 0), x1 2
]0, 1[}. Let ' 2 L2(I) and u' be the unique solution to Problem (45), then
Problem (46) has an unique solution.

Proof of Lemma 4.1. In order to apply Lax-Milgram’s Theorem, let us
show that u', solution of (45), is such that

ru' · n 2 L2(I).

This result is a consequence of Corollary 3.1. Indeed, thanks to properties
(1)–(3) and (16) satisfied by T ,  = T (') clearly satisfies the assumptions
(24); hence u' = u, where u is the solution to Problem (25) with  = T (');
therefore, we can apply Corollary 3.1 with u = u'. ⇤

Let E = L2(I) ⇥ L2(⌦), and define the operator F from E into E such
that

F : (', �) 7�! (�A|I � �B |I , �), (47)

where � is the solution to Problem (46). Note that F (', �) is independent
of �. Let (', �) 2 E, we define k(', �)k2E = k'k2L2(I) + k�k2L2(⌦). Let us
prove now that F is continuous and compact from E into a ball of E. Hence,
Theorem 4.1 will be proven by Schauder’s Theorem.
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Proposition 4.1. Let
⌦ = ⌦A [ I [ ⌦B,

with ⌦A =]0, 1[⇥]0, 1[, ⌦B =]0, xmax
1 [⇥]xmin

2 , 0[, and I = {(x1, 0), x1 2
]0, 1[}. Let E = L2(I) ⇥ L2(⌦) and F be an operator from E into E de-
fined by (47). There exists R 2 R?+, independent of ' and �, such that

kF (', �)kE  R 8(', �) 2 E.

Proof. By definition,

kF (', �)k2E = k�A|I � �B |Ik2L2(I) + k�k2L2(⌦),

and therefore,

kF (', �)k2E  2k�A|Ik2L2(I) + 2k�B |Ik2L2(I) + k�Ak2H1(⌦A) + k�Bk2H1(⌦B).

Therefore, by continuity of the trace operator from H1(⌦i) to L2(I), i = A,
B, there exist CA and CB 2 R?+ such that

kF (', �)k2E  CAk�Ak2H1(⌦A) + CBk�Bk2H1(⌦B). (48)

Lemma 4.2. Let
⌦ = ⌦A [ I [ ⌦B,

with ⌦A =]0, 1[⇥]0, 1[, ⌦B =]0, xmax
1 [⇥]xmin

2 , 0[, and I = {(x1, 0), x1 2
]0, 1[}. Let E = L2(I) ⇥ L2(⌦) and (', �) 2 L2(I) ⇥ L2(⌦). Let u' be
the (unique) solution to Problem (45) and � the (unique) solution to Prob-
lem (46), then there exists Ri 2 R?+, independent of ', u' and �, such
that

k�ikH1(⌦i)  Ri (i = A,B).

Proof. Taking  = �i in (46) yields
Z

⌦i

r�i ·r�i = ci

Z
I
ru' · n�i,

and therefore, using Cauchy Schwartz’ inequality and the trace operator in
the RHS and Poincaré’s inequality for the LHS, there exists Ci > 0 such
that

k�ikH1(⌦i)  ciCikru' · nkL2(I). (49)
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From Corollary 3.1 with  = T ('), there exists C1 > 0 independent of u'
and ' such that

kru' · nkL2(I)  C1

⇣
ku'kH1(⌦A) + kT (')kH2(I) + kbkH1(�3

A)

⌘
;

thanks to Proposition 3.1, there exists C2 > 0 independent of u' and ' such
that

kru' · nkL2(I)  C2

⇣
kT (')kH2(I) + kbkH1(�3

A)

⌘
, (50)

and since by Assumption (2), T is uniformly bounded from L2(I) to H2(I),
the result of Lemma 4.2 follows from (49) and (50). We deduce from (48)
and from Lemma 4.2, the result of Proposition 4.1.

Lemma 4.3. Let
⌦ = ⌦A [ I [ ⌦B,

with ⌦A =]0, 1[⇥]0, 1[, ⌦B =]0, xmax
1 [⇥]xmin

2 , 0[, and I = {(x1, 0), x1 2
]0, 1[}. Let E = L2(I) ⇥ L2(⌦) and F be an operator from E into E de-
fined by (47). The operator F is compact from E to E.

Proof. Let ('n, �n)n2N be a sequence of E, let us show that there exists a
subsequence ('nk , �nk)k2N and w 2 E such that F ('nk , �nk) ! w in E, as
k ! +1.

Let � n be the solution to the following problem
(

� n 2 L2(⌦), � n
i 2 H1

0,2(⌦i) (i = A,B),

Ai(�
n
i ,  ) = Lu'n ,i( ), 8 2 H1

0,2(⌦i) (i = A,B),

where u'n is the solution to the following problem
⇢

u'n 2 K'n ,

AA(u'n , v � u'n) � L(v � u'n), 8v 2 K'n ,

and Ai, Lu'n ,i, L and K'n are defined in (18)–(21).
From Lemma 4.2, one has

k� n
i kH1(⌦i)  Ri 8n 2 N (i = A,B);

hence there exists a subsequence (� nk

i )k2N and wi 2 H1(⌦i) such that
� nk

i ! wi in H1(⌦i) for the weak topology, as k ! +1. By compact-
ness of the injection from H1(⌦i) in L2(⌦i) and of the trace operator from
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H1(⌦i) in L2(I), � nk

i ! wi in L2(⌦i), and � nk

i |I ! wi|I in L2(I), as
k ! +1.

Let w 2 L2(⌦) such that w|⌦i
= wi (i = A,B) and w = (wA|I �wB |I , w),

then F ('nk , �nk) ! w in E, as k ! +1.
The operator F maps E into a closed ball of E and is compact. We

shall show in the next section that it is continuous from E to E. Hence
by the Schauder fixed point theorem, there exists (', �) 2 E such that
(', �) = (�A|I � �B |I , �), where � is the solution to Problem (46). This
concludes the proof of Theorem 4.1.

4.2. Continuity of the fixed point operator F . In order to prove
that F is continuous from E into E, let us first show the following result:

Proposition 4.2. Let ('n)n2N ⇢ L2(I) be such that 'n ! ' in L2(I); let
u'n 2 H1(⌦A) be the solution to the following problem⇢

u'n 2 K'n ,

AA(u'n , v � u'n) � L(v � u'n), 8v 2 K'n ,
(51)

with K'n = {v 2 H1(⌦A), v|I = T ('n) a.e, v|�3
A

 a a.e} and AA, L

defined by (18) and (21). Then u'n ! u' in H1(⌦A), for the strong topology
(recall that u' is the solution to problem (45)).

Proof. From the H1 estimate obtained for the solution of the Signorini
problem (51) (see Proposition 3.1) choosing  = T ('n), yields the existence
of C1 2 R?+, independent of 'n, such that

ku'nkH1(⌦A)  C1

⇣
kT ('n)kH1(I) + kbkL2(�3

A)

⌘
;

and thanks to Assumption (2), there exists C2 2 R?+ independent of n such
that

ku'nkH1(⌦A)  C2 8n 2 N.

Hence, there exists a subsequence (u'nk
)k2N ⇢ H1(⌦A) and ũ 2 H1(⌦A)

such that

u'nk
! ũ in H1(⌦A) for the weak topology, as k ! +1. (52)

Let us now show that ũ is the (unique) solution to Problem (45), hence
ũ = u', and that ku'nk

kH1(⌦A) ! ku'kH1(⌦A), which yields the strong con-
vergence of u'nk

towards u' in H1(⌦A) as k tends to +1. The convergence
of the whole sequence u'n follows by a classical argument.
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For the sake of simplicity, let us from now denote by (u'n)n2N the subse-
quence (u'nk

)k2N. For any n 2 N, u'n satisfies to the following problem
⇢

u'n 2 K'n ,

AA(u'n , vn � u'n) � L(vn � u'n), 8vn 2 K'n .
(53)

In order to pass to the limit as n ! +1 in (53) and obtain that ũ is solution
to (45), one possibility is to construct, for any v 2 K', a sequence (vn)n2N
such that vn 2 K'n and vn ! v in H1(⌦A). This, however, does not seem
to be straightforward. We shall deal with this problem by showing that
Problem (45) is equivalent to the following (easier to deal with) problem(

ũ' 2 K̃' = {v 2 K', v  a a.e in ⌦A},
AA(ũ', v � ũ') � L(v � ũ'), 8v 2 K̃'.

(54)

That is, if u' is the solution to (45) and ũ' is the (unique) solution to
(54), then u' = ũ'. Indeed, let u' be solution to (45), since K̃' ⇢ K',
one only needs to prove that u'  a a.e. on ⌦A, in order for ũ' to be
solution to (54). The proof of the maximum principle consists in taking
v = u' � (u' � a)+ 2 K' in (45), which yields kr(u' � a)+k L2

(⌦A)
= 0;

since (u' � a)+ 2 H1
0,�3

A
(⌦A), this, in turn, yields u'  a a.e..

Hence Problem (45) is equivalent to Problem (54), and we only need to
show that ũ is the solution to Problem (54).

From the equivalence of the Problems (45) and (54), u'n  a a.e. in ⌦A.
Therefore, Z

⌦A

(a� u'n)(x)(a� ũ)�(x)dx � 0,

and since u'n ! ũ in H1 for the weak topology, k(a � ũ)�kL2(⌦A)  0,
therefore, ũ  a a.e in ⌦A.

In order to show that AA(ũ, v � ũ) � L(v � ũ), 8v 2 K̃', let us state the
following lemma, the proof of which will be addressed further.

Lemma 4.4. For any ' 2 L2(I), let

K' = {v 2 H1(⌦A), v|I = T (') a.e, v|�3
A

 a a.e}

and K̃' = {v 2 K', v  a a.e in ⌦A}. Let ('n)n2N ⇢ L2(I) such that
'n ! ' in L2(I), then for any v 2 K̃', there exists a sequence (vn)n2N ⇢
K'n such that vn ! v in H1(⌦A) as n ! +1.
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Let v 2 K̃', thanks to Lemma 4.4, there exists a sequence (vn)n2N ⇢ K'n

such that vn ! v in H1(⌦A); since L is continuous, L(vn�u'n) ! L(v� ũ)
as n ! +1, similarly, it is easily seen that AA(u'n , vn) ! AA(ũ, v); passing
to the upper limit on n in (53), one obtains

AA(ũ, v) � L(v � ũ) + lim sup
n!+1

AA(u'n , u'n), (55)

which holds for all v 2 K̃'; taking v = ũ in (55)

AA(ũ, ũ) � lim sup
n!+1

AA(u'n , u'n). (56)

Since
AA(u, u) =

Z
⌦A

|ru|2(x)dx,

it is easily seen that

AA(ũ, ũ)  lim inf
n!+1

AA(u'n , u'n). (57)

Thus, from (56) and (57), it follows that AA(u'n , u'n) ! AA(ũ, ũ) as k !
+1. Hence ũ is solution to Problem (54) and finally ũ = u', which concludes
the proof of Proposition 4.2 ⇤

The continuity of the operator F is stated in the following proposition:

Proposition 4.3. Let ('n)n2N ⇢ L2(I) such that 'n ! ' in L2(I). For
n 2 N, let � n be the unique solution to the following problem

(
� n 2 L2(⌦), � n

i 2 H1
0,2(⌦i) (i = A,B),

Ai(�
n
i ,  ) = Lu'n ,i( ), 8 2 H1

0,2(⌦i) (i = A,B),
(58)

where u'n is the solution to Problem (51). Then, � n
i ! �i in H1(⌦i) for

the strong topology, where �i is the solution to
(

� 2 L2(⌦), �i 2 H1
0,2(⌦i) (i = A,B),

Ai(�i,  ) = Lu',i( ), 8 2 H1
0,2(⌦i) (i = A,B);

and therefore, (� n
A |I�� n

B |I , � n) ! (�A|I��B |I , �) in E (= L2(I)⇥L2(⌦)).
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Proof. Let 'n 2 L2(I), u'n be the solution to Problem (51), Lu'n ,i be
defined by (19) and � n be the solution to Problem (58). By continuity, if
Lu'n ,i ! Lu',i in (H1(⌦i))? as n ! +1, then � n

i ! �i in H1(⌦i) as
n ! +1. Let us show that Lu'n ,i ! Lu',i in (H1(⌦i))? as n ! +1; by
definition of Lu',i, this is satisfied if ru'n · n ! ru' · n in L2(I). Using
Propositions 3.1 and 3.2, taking  = T ('n) and thanks to Assumption (2),
there exists C 2 R?+, independent of n, such that

ku'nkH2(⌦A/2)  C 8n 2 N,

where ⌦A/2 =]0, 1[⇥]0, 1
2 [. Hence there exists a subsequence, still denoted

by (u'n)n2N ⇢ H2(⌦A/2) and q 2 (H1(⌦A/2))2 such that ru'n ! q in
(H1(⌦A/2))2 for the weak topology. By Proposition 4.2, ru'n ! ru'
in (L2(⌦A/2))2, and therefore ru'n ! ru' in (H1(⌦A/2))2 for the weak
topology, since the trace operator is compact from H1(⌦A/2) to L2(I), one
has ru'n · n ! ru' · n in L2(I), and by a classical argument, the whole
sequence converges.
Proof of Lemma 4.4. For ' 2 L2(I) define u0

'(x1, x2) = T (')(x1)
8(x1, x2) 2 ⌦A. Let ('n)n2N and ' 2 L2(I) such that 'n ! ' in L2(I),
and let v 2 K̃'. For n 2 N, let vn = min(v � u0

' + u0
'n

, a). Let us
show that vn 2 K'n . Clearly vn 2 H1(⌦A) and vn|�3

A
 a a.e.; since

vn|I = min(u0
'n |I

, a), and u0
'n |I

 a a.e. from the property (1) of the func-
tion T , hence vn|I = u0

'n |I
= T ('n) a.e..

Let us now show that vn ! v in H1(⌦A) as n ! +1; we shall use the
following Lemma, the proof of which is given below.

Lemma 4.5. Let ⌦ be an open bounded regular domain of RN , w a function
of H1(⌦) and (un)n2N a sequence of H1(⌦) such that un ! u in H1(⌦),
then min(un, w) ! min(u,w) in H1(⌦), as n ! +1.

Since, thanks to property (3) of T , u0
'n
! u0

' in H1(⌦A), applying this
result with un = v � u0

' + u0
'n

, u = v and w = a, one deduces that vn ! v
in H1(⌦A), as n ! +1.
Proof of Lemma 4.5. Let (un)n2N ⇢ H1(⌦) such that un ! u in H1(⌦),
and w 2 H1(⌦). First since | min(un, w) � min(u,w) || un � u | and
un ! u in H1(⌦), one immediately obtains that min(un, w) ! min(u,w)
in L2(⌦). Let us then show that min(un, w) ! min(u,w) in H1(⌦) for the
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weak topology. We note that

kr(min(un, w))k2L2(⌦)  kr(un)k2L2(⌦) + kr(w)k2L2(⌦).

since un ! u in H1(⌦), there exists C 2 R?+ such that kr(un)kL2(⌦)  C,
hence, there exists a subsequence of (min(un, w))n2N and g in H1(⌦) such
that min(unk , w) ! g in H1(⌦) for the weak topology, as k ! +1. By
uniqueness of the limit, min(unk , w) ! min(u,w) in H1(⌦) for the weak
topology.

Let us now show that

r(min(unk , w)) !r(min(u,w))

in L2(⌦) for the strong topology. Assume that there exists a subsequence of
(min(unk , w))k2N, which for the sake of simplicity, will still be denoted by
(min(unk , w))k2N, which is such that r(min(unk , w)) does not converge to
r(min(u,w)) in L2(⌦). Therefore, since min(un, w) ! min(u,w) in H1(⌦)
for the weak topology, there exists " > 0 such that

lim inf
k!+1

kr(min(unk , w))k2L2(⌦) = kr(min(u,w))k2L2(⌦) + ".

Since

| r(max(u'nk
, w)) |2 + | r(min(u'nk

, w)) |2=| ru'nk
|2 + | rw |2,

passing to the limit in k yields

lim inf
k!+1

Z
⌦
| runk |2 d�+

Z
⌦
| rw |2 d�

= lim inf
k!+1

Z
⌦
| r(min(unk , w)) |2 d�+ lim inf

k!+1

Z
⌦
| r(max(unk , w)) |2 d�,

where � denotes the 2D Lebesgue measure.
From the assumption kr(min(unk , w))k2L2(⌦) ! kr(min(u,w))k2L2(⌦) +",

we obtain

lim inf
k!+1

Z
⌦
| runk |2 d�+

Z
⌦
| rw |2 d�

= "+
Z

⌦
| r(min(u,w)) |2 d�+ lim inf

k!+1

Z
⌦
| r(max(unk , w)) |2 d�.
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Since min(unk , w) ! min(u,w) in H1(⌦) for the weak topology, (and simi-
larly max(unk , w) ! max(u,w) in H1(⌦) for the weak topology), and since
un ! u in H1(⌦), one has

Z
⌦
| ru |2 d�+

Z
⌦
| rw |2 d�

� "+
Z

⌦
| r(min(u,w)) |2 d�+

Z
⌦
| r(max(u,w)) |2 d�,

and therefore,
Z

⌦
| ru |2 d�+

Z
⌦
| rw |2 d� � "+

Z
⌦
| r(u) |2 d�+

Z
⌦
| r(w) |2 d�,

which is in contradiction with " > 0. Hence, Lemma 4.5 is proven.
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