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Université de Savoie, LAMA, GM3, 73376 Le Bourget-du-Lac Cedex, France.

Abstract

A model is derived for the coupling of transient free surface and pressurized flows.
The resulting system of equations is written under a conservative form with discon-
tinuous gradient of pressure. We treat the transition point between the two types of
flows as a free boundary associated to a discontinuity of the gradient of pressure. The
numerical simulation is performed by making use of a Roe-like finite volume scheme
that we adapted to such discontinuities in the flux. The validation is performed by
comparison with experimental results.
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1 Introduction

In this paper we are interested in flows occurring in closed pipes. It may happen
that some parts of the flow are free-surface (this means that only a part of
the section of the pipe is filled) and other parts are pressurised (this means
that all the section of the pipe is filled see the figure 1). The phenomenon of
transition from free surface to pressurised flow occurs in many situations as
storm sewers, waste or supply pipes in hydroelectric installations. It can be
induced by sudden changes in the boundary conditions (failure of a pumping
station, rapid change of the discharge, blockage of the line etc.). During the
transition, the excess pressure rise may damage the pipe and cause related
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Fig. 1. Mixed flow: free surface and pressurised

problems as ejection of manhole covers, basement flooding. The simulation of
such a phenomenon is thus a major challenge and a great amount of works
was devoted to it these last years (see [5],[17],[21],[2] for instance).

Let us thus recall the current and previous works in this research field by a
partial state of the art review. Cunge and Wegner [4] studied the pressurised
flow in a pipe as if it were a free-surface flow by assuming a narrow slot to
exist in the upper part of the tunnel, the width of the slot being calculated
to provide the correct sonic speed. This approach has been credited to Preiss-
mann. Later, Cunge [3] conducted a study of translation waves in a power
canal containing a series of transitions, including a siphon. Pseudoviscosity
methods were employed to describe the movement of bores in open-channel
reaches. Wiggert [23] studied the transient flow phenomena and his analyti-
cal considerations included open-channel surge equations that were solved by
the method of characteristics. He subjected it to subcritical flow conditions.
His solution resulted from applying a similarity between the movement of a
hydraulic bore and an interface (that is, a surge front wave). Following Wig-
gert’s model, Song, Cardle and Leung [20] developed two mathematical models
of unsteady free-surface/pressurised flows using the method of characteristics
(specified time and space) to compute flow conditions in two flow zones. They
showed that the pressurised phenomenon is a dynamic shock requiring a full
dynamic treatment even if inflows and other boundary conditions change very
slowly. However the Song models do not include the bore presence in the free-
surface zone. Hamam and McCorquodale [13] proposed a rigid water column
approach to model the mixed flow pressure transients. This model assumes a
hypothetical stationary bubble across compression and expansion processes.
Li and McCorquodale [15] extended the rigid water column approach to allow
for the transport of the trapped air bubble. Recently Fuamba [8] proposed a
model for the transition from a free surface flow to a pressurised one in a way
very close to ours. He wrote the conservation of mass, momentum and energy
through the transition point and proposed a laboratory validation of his model.
In the last few years, numerical models mainly based on the Preissmann slot
technique have been developed to handle the flow transition in sewer systems.
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Implementing the Preissmann slot technique has the advantage of using only
one flow type (free-surface flow) throughout the whole pipe and of being able
to easily quantify the pressure head when pipes pressurise. Let us specially
mention the work of Garcia-Navarro, Alcrudo and Priestley [11] in which an
implicit method based on the characteristics has been proposed and success-
fully tested on the Wiggert test.
The Saint Venant equations, which are written in a conservative form, are
usually used to describe free surface flows of water in open channels. As said
before, they are also used in the context of mixed flows (i.e. either free sur-
face or pressurized) using the artifice of the Preissmann slot [21],[2]. On the
other hand, the commonly used model to describe pressurized flows in pipes
is the system of the Allievi equations [21]. This system of 1st order partial
differential equations cannot be written under a conservative form since this
model is derived by neglecting some acceleration terms. This non conservative
formulation is not appropriate for a finite volume discretization and also for
a good approximation of the transition between the two types of flows since
we are not able to write conservations of appropriate quantities such as mo-
mentum and energy. Then, it appears that a ”unified” modelisation with a
common set of conservative variables (see below) could be of a great interest
for the coupling between free-surface and pressurised flows and its numerical
simulation could be more effective.
The aim of this paper is: (i) to propose a system of equations written in a
conservative form and modelling both types of flows, (ii) describe an explicit
finite volume discretisation to solve numerically these equations, (iii) validate
the model by comparison with experimental data. Notice that we do not claim
that we take into account all the complexity of the physics: we should deal for
instance with entrapment of air bubbles.
In the first part, we derive from the compressible Euler equations an alter-
native model to the Allievi equations, under a conservative form (following
the derivation of the Saint Venant equations). We state some properties of
the model such as the conservation of steady states and the existence of an
energy for the two types of flows. We show how this model can be connected
to the Saint Venant equations through a pressure term with discontinuous
gradient via a common set of conservative unknowns. In the second part, the
numerical simulation is performed by making use of a Roe-like explicit finite
volume scheme adapted to discontinuities of the flux gradient occurring in the
treatment of the transitions between free-surface and pressurised flows. Let
us notice that with this type of unique conservative formulation for the two
types of flows, we are able to deal with flows for which it exists more that one
transition point unlike Song et al. [20] with a totally dynamic treatment of
these transition points as Fuamba mentions it [8].
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2 A conservative model for dual flows

Before we write the dual model, let us briefly recall some features about the
Saint Venant equations for the modelisation of free-surface flows in channels.

2.1 Saint-Venant equations revisited

The system of Saint-Venant for flows in an open channel can be written as :

∂tA + ∂xQ =0 (1)

∂tQ + ∂x(
Q2

A
+ gI1 cos θ(x)) = gA(sin θ − Sf) + g I2 cos θ(x) (2)

The unknowns are the cross-sectional flow area A = A(x, t), and the discharge
Q = A u where u is the mean value of the speed over the cross-section in the
x-axis direction (see the figure 2 for the notations).

The other terms are g I1 cos θ(x), term of hydrostatic pressure with I1 =
∫ y

0
(h − z) σ(x, z) dz and gI2, pressure source term induced by the changes of

the geometry, with I2 =
∫ h

0
(h − z) ∂xσ(x, z) dz, where σ(x, z) is the width of

the cross-section at position x and at height z over the bottom.

Let us remark that σ(x, h) = T , width of the free surface, and that, from the
definition of I1, we have I1(A) = A y where y is the distance between the
center of mass and the free surface of water. In addition we have:

∂I1

∂A
= A

∂h

∂A
=

A

T
.

Notice that since we are not supposing that the slope of the channel θ(x) is
small the usual term of hydrostatic pressure I1 is replaced by I1 cos θ(x).

This system can be derived from the incompressible Euler equations by taking
mean values in sections orthogonal to the main flow axis. The free surface is
advected by the flow and is assumed to be horizontal in the y direction. The
distribution of the pressure is supposed to be hydrostatic: this means that the
acceleration of a particle in the plane orthogonal to a streamline is zero. The
pressure law writes:

P (x, y, z) = Pa + ρ g (h(x) − z) cos θ(x) (3)
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Fig. 2. free surface flow in an open channel

where Pa, pressure at the free surface, is usually defined as zero. The terms I1

and I2 arise from the computation of the averaged gradient pressure term in
a section. In the case of an uniform geometry of the channel (which may be a
pipe, of course) we have I2 = 0 and this is assumed in the sequel. The friction
term Sf is assumed to be given by the Manning-Strickler law (see [21]):

Sf = K(A) u |u| with K(A) =
1

K2
s Rh(A)4/3

(4)

where Ks > 0 is the Strickler coefficient, depending on the material, and

Rh(A) is the so called hydraulic radius given by Rh(A) =
A

Pm
, Pm being the

wet perimeter (length of the part of the channel’s section in contact with the
water).
A standard computation leads to the following result:

Theorem 1 The system (1)-(2) is strictly hyperbolic for A(x, t) > 0. It ad-
mits a mathematical entropy:

E(A, Q, Z) =
Q2

2A
+ gAZ + gA(h(A) − y) =

Au2

2
+ gAZ + gAh(A) − gI1(A)

which satisfies the entropy inequality:

∂tE + ∂x[u(E + gI1)] ≤ −g A K(A) u2 |u| .

For smooth solutions, the velocity u satisfies:

∂tu + ∂x

(

u2

2
+ g h(A) + g Z

)

= −g K(A) u |u| . (5)

Let Ψ be the quantity
u2

2
+ g h(A) + g Z, called the total head. The system

(1)-(2) admits a family of smooth steady states characterized by the relations:

Q = Au = Q0,
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u = u(x) and
dΨ

dx
= −g K(A) u |u|,

where Q0 is an arbitrary constant.

2.2 A conservative model for unsteady pressurized flows in closed pipes

Using the same mathematical technique as above, we derived the new conser-
vative model for pressurised flows from the 3D system of compressible Euler
equations by integration over sections orthogonal to the flow axis. The equa-
tion for conservation of mass and the first equation for the conservation of
momentum are

∂tρ + div(ρ ~U)= 0 (6)

∂t(ρ u) + div(ρ u ~U)= Fx − ∂xP (7)

with the speed vector ~U = u~i + v~j + w~k = u~i + ~V , where the unit vector ~i is
along the main axis (see Fig.3 below). ρ is the density of the water.
We use the Boussinesq pressure law (as in [8] for instance):

P = Pa +
1

β

(

ρ

ρ0
− 1

)

, (8)

where ρ0 is the density at the atmospheric pressure Pa and β the coefficient
of compressibility of the water. It is easily obtained from the definition of the
bulk modulus of elasticity ([21]):

K = −
dP

dV/V
=

dP

dρ/ρ
(9)

for any volume V of liquid, where K = 1/β. Exterior strengths ~F are the
gravity ~g and the friction −Sf

~i with Sf still given by (4). We denote θ(x) the
slope of the pipe at position x. Then equations (6)-(7) become

∂tρ + ∂x(ρ u) + div(y,z)(ρ ~V ) = 0 (10)

∂t(ρ u) + ∂x(ρ u2) + div(y,z)(ρ u ~V ) = ρ g (sin θ − Sf ) −
∂xρ

βρ0
(11)

Assuming that the pipe is infinitely rigid, the equations (10)-(11) are inte-
grated over a cross section Ω(x) with area A(x).

Overlined letters represent averaged quantities over Ω(x). For the first equa-
tion we have successively, with the approximation ρu ≃ ρ u :
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∫

Ω(x)

∂tρ = ∂t

∫

Ω(x)

ρ,

∫

Ω(x)

∂x(ρ u)= ∂x(ρ uA) −
∫

∂Ω(x)

ρ u ∂x ~m · ~n,

∫

Ω(x)

div(y,z)(ρ ~V ) =
∫

∂Ω(x)

ρ ~V · ~n

where m ∈ ∂Ω, ~m stands for
−−→
Om and ~n =

~m

|~m|
is the outward unit vector at

the point m in the Ω-plane (see Fig. 3). Then, from the waterproof condition
~U · ~N = 0 on ∂Ω we get easily :

(

u ∂x
~M − ~V

)

· ~n = 0 on ∂Ω

and the following equation for the conservation of mass:

∂t(ρA) + ∂x(ρ Q) = 0.

A = A(x) is the surface area of a section normal to the pipe axis at position
x, Q = A u is the discharge of the liquid (with the average velocity u). Next,
with the approximations ρu ≃ ρ u and ρ u2 ≃ ρ u2, the same procedure applied
to (7) gives the conservation law for the momentum:

∂t(ρ̄ Q̄) + ∂x

(

ρ̄
Q̄2

A
+ c2 ρ̄ A

)

= g ρ̄ A(sin θ − Sf) + c2 ρ̄
dA

dx
,

where

c2 =
1

β ρ0
. (12)

Omitting the overlined notations, we get finally the following system written
in a conservative form for the unknowns M = ρ A , D = ρ Q:
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∂t(M) + ∂x(D)= 0 (13)

∂t(M) + ∂x(
D2

M
+ c2 ρ M) = ρ g M(sin θ − Sf ) + c2 M

A

dA

dx
(14)

with Sf given by the Manning-Strickler law (4). The term
dA

dx
is related to

the geometry of the pipe and assumed to be zero in the sequel for the sake of
simplicity (uniform section). A complete derivation of this model, taking into
account the deformations of the pipe, and a spatial second order finite volume
method with Roe’s numerical flux in a linearly implicit version is presented in
[1]. The preceding system satisfies the following properties:

Theorem 2 The system (13)-(14) is strictly hyperbolic. It admits a mathe-
matical entropy:

E(M, D, Z) =
D2

2M
+ gMZ + c2M ln M

which satisfies the entropy inequality:

∂tE + ∂x[u(E + c2 ln M)] ≤ −g M K(A) u2 |u| .

Moreover, for smooth solutions, the velocity u satisfies:

∂tu + ∂x

(

u2

2
+ g Z + c2 ln M

)

= 0. (15)

Let Ψ be the quantity
u2

2
+ c2 ln M + g Z, here again called the total head.

The system (13)-(14) admits a family of smooth steady states characterized
by the relations:

D = D0 ,

u = u(x) and
dΨ

dx
= −g K(A) u |u|, (16)

where D0 is an arbitrary constant.

Remark 3

If we define the water head by h =
P − P0

ρ0 g
, the linearised version (8) gives

h =
ρ − ρ0

β ρ2
0 g

= c2 ρ − ρ0

ρ0 g
. But from (9) we deduce rather g h = c2 ln

ρ A

ρ0 A
=

c2 ln
ρ

ρ0

, thus (16) is still valid if we define the total head by
u2

2
+ g h + g Z in

a more classical way.
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2.3 Dual model

The two preceding models, for the free-surface flows (1)-(2) and for the pres-
surised flows (13)-(14), are written under a conservative form and are formally
very close to each other. The main difference arises from the pressure laws (3)
and (8) and of course the set of unknowns. This proximity leads us to use a
common couple of conservative variables in order to write a single formulation.
Let us consider first a pressurised flow. We define an “FS-equivalent” wet area
(FS for Free Surface) Aeq through the relation:

M = ρ Amax = ρ0 Aeq ,

where Amax is the cross sectional area, and a “FS-equivalent discharge” Qeq

by

D = ρ Q = ρ0 Qeq or Qeq = Aeq u .

Dividing (13)-(14) by ρ0 we get :

∂tAeq + ∂xQeq =0

∂tQeq + ∂x

(

Q2
eq

Aeq
+ c2 Aeq

)

= g Aeq sin θ − g K
Qeq|Qeq|

Aeq

For a free surface flow and at a transition point we have obviously A = Aeq

and Q = Qeq with the above definition of Aeq and Qeq. Therefore, in the sequel
U = (A, Q) denotes the state vector for both flow types.

The dual model thus writes :

∂tA + ∂xQ = 0 (17)

∂tQ + ∂x

(

Q2

A
+ p(x, A, E)

)

= g A sin θ − g K(A, E)
Q|Q|

A
(18)

where E denotes the ”state” of the current point x (free surface : E = FS, or
pressurised : E = Press) and where the pressure law term writes:



























p(x, A, E) = g I1(A) cos θ(x) if E = FS,

p(x, A, E) = g I1(Amax) cos θ(x) + c2 (A − Amax) if E = Press.

(19)
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and the friction term writes:


































K(A, E) =
1

K2
s Rh(A)

4

3

if E = FS,

K(A, E) =
1

K2
sRh(Amax)

4

3

if E = Press.

(20)

The mere value of A is neither sufficient to determine the pressure law nor
the coefficient K in the friction term, except in the case A ≥ Amax (the flow
is necessarily pressurised). If A < Amax the flow may be a free surface flow or
a pressurised flow but in depression.

Thus the dual model writes in conservative form:

∂tU + ∂xF (x, U) = G(x, U)

where the unknown state, the flux vector and the source term write respec-
tively:

U =







A

Q





 F (x, U) =









Q

Q2

A
+ p(x, A, E)









and G(x, U) =









0

g A sin θ − g K(A, E)
Q|Q|

A









Let us remark that from the momentum conservation equations (2) and (14)
and the friction law (4), the pressure and the friction term are continuous
through a transition point.

In each open set in the (x, t) plane, avoiding a transition point, the system

is strictly hyperbolic since DF (x, U) =







0 1

c2 − u2 2u





 with u =
Q

A
(average

velocity along the flow axis), c =

√

g
A

T
cos(θ) in case of a free surface flow and

√

1

ρ0β
else. The eigenvalues are λ = u±c and the associated right eigenvectors

are r =







1

u ± c





.

The transition points from a type of flow to another are of course unknowns
of the problem. Notice that p(x, A, E) have a discontinuous derivative with
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respect to x (gradient of pressure) at each transition point. Such a disconti-
nuity is ”severe” in the sense that the magnitude of the eigenvalues changes
drastically through this point.

Fig. 4 gives, in the case of a rectangular pipe, the behaviour of the pressure
and the sound speed with respect to A and the ”state variable” E.

A

FS

Press.

Amax

p(A) c(A)

Amax
A

Press.

FS
(1)

(2)

(1)
(2)

Press.

(depression)

(depression)

Fig. 4. Pressure law and sound speed in the case of a rectangular pipe. Trajectory
(1) corresponds to a pressurization. Trajectory (2) depends on the state of the flow
around (see subsection 3.5)

3 Finite volume discretisation

3.1 Discretisation of the space domain

{

mi

h i

x xx xxi i+1/2i−1/21/2 N+1/2

L

The spatial domain is a pipe of length L. The main axis of the pipe is divided
in N meshes mi = [xi−1/2, xi+1/2], 1 ≤ i ≤ N . ∆t denotes the timestep at time
tn and we set tn+1 = tn + ∆t.

The discrete unknowns are Un
i =







An
i

Qn
i





 1 ≤ i ≤ N, 0 ≤ n ≤ nmax. The

upstream and downstream boundary states Un
0 , Un

N+1 are associated to fictive
meshes denoted m0 et mN+1.
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3.2 Principle of explicit first order Roe scheme

In this section, we propose a finite volume discretisation of the equations
(17),(18),(19) and (20) by firstly adapting a well balanced scheme using the
upwinding of the source terms due to the slope of the duct as done by Leroux
et al. [12,18] and Gallouet et al. [10,9], secondly by defining a criterion to
follow the evolution of the transition points.

Following Leroux et al. [12,18] we use a piecewise constant function to ap-
proximate the bottom of the pipe. Adding the equation ∂tZ = 0 related to
the altitude of the bed (sin θ = ∂xZ), we note W the conservative variable
(Z, A, Q)t and we get the following system in a non- conservative form:

∂tW + ∂xΦ(x, W ) + g A ∂xZ = TS(W ) (21)

with

Φ(x, W ) =















0

Q

Q2

A
+ p(x, A)















TS(W ) =















0

0

−g K(A)
Q|Q|

A















Such an approximation of the topography introduces a stationary wave for
each local Riemann problem at the interfaces xi+1/2. As the possibly discon-
tinuous slope θ(x) appears in the pressure term p(x, A), we use a piecewise
constant function to approximate the slope of the pipe and the same treatment
as the bottom topography is performed by using the equation ∂tcosθ(x) = 0.
A stationary wave for the slope is then added in the following Riemann prob-
lem. For the sake of simplicity in the derivation of the following formula, we
do not keep track of this point.

Let W n
i be an approximation of the mean value of W on the mesh mi at time

tn. Integrating the above equations over ]xi−1/2, xi+1/2[×[tn, tn+1[ we deduce a
Finite Volume scheme written as follows:

W n+1
i = W n

i −
∆t

hi

(

Φ(W ∗

i+1/2(0
−, W n

i , W n
i+1)) − Φ(W ∗

i−1/2(0
+, W n

i−1, W
n
i ))

)

+

+ TS(W n
i )

where W ∗

i+1/2(ξ = x/t, Wi, Wi+1) is the exact or approximate solution to the
Riemann problem at interface xi+1/2 associated to the left and right states Wi

and Wi+1. Notice that the topography does not appear explicitly in this formu-
lation (∂xZ = 0 on ]xi−1/2, xi+1/2[) but contributes to the computation of the
numerical flux. Following Gallouët et al. [9] we compute W ∗

i+1/2(0
−, Wi, Wi+1)

using an approximate Riemann solver described in the two next subsections.
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In order to obtain the numerical scheme to solve the equation (21), we have
to treat two types of interfaces located at the point xi+ 1

2

: the first one is a
non transition point, that is when the flow on the left and on the right sides
of the interface is of the same type. The second one is a transition point, that
is when the flow changes of type through the interface.

3.3 Case of a non transition point.

Denote

B(x, W ) =















0 0 0

0 0 1

gA c(A)2 − u2 2 u















the convection matrix associated to the non-conservative form (21). In this
configuration, W ∗

i+1/2(ξ = x/t, Wi, Wi+1) is the exact solution to the linear
Riemann problem:



























∂tW + J̃ ∂xW = 0

W = (Z, A, Q) =











Wl = (Zl, Al, Ql) if x < 0

Wr = (Zr, Ar, Qr) if x > 0

(22)

with (Wl, Wr) = (Wi, Wi+1) and J̃ = J̃(Wl, Wr) = B
(

xi+1/2,
Wl + Wr

2

)

.

J̃ has the eigenvalues λ1 = 0, λ2 = ũ − c̃ and λ3 = ũ + c̃ with Ã =
Al + Ar

2
,

ũ =
Ql + Qr

Al + Ar
and in the case of a free surface flow, c̃ =

√

√

√

√g
Ã

T (Ã)
cos θ and in

the case of a pressurised flow c̃ = c =

√

1

βρ0
. The eigenvectors are:

r̃1 =















c̃2 − ũ2

−g Ã

0















r̃2 =















0

1

ũ − c̃















and r̃3 =















0

1

ũ + c̃















The solution of the Riemann problem (22) consists in four constant states
connected by shocks propagating along the lines ξ = x/t = λi. Since the
values of the altitude Z are known, we are looking for the states on each sides
of the line ξ = 0 denoted by (AM, QM) for the left side and (AP, QP ) for
the right side (see Figure 5 above). Moreover, as the third component of r̃1 is
null, the discharge Q is continuous through the line ξ = 0. Thus QM = QP .
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In the sequel, we denote QMP this value. By a straightforward computation,
we have the three cases:

AM
QM

AM
QM

AM
QM

AP
QP

AP
QP

AP
QP

W W W W Wl r l r l r

(1) (1) (1)

(2)

(2)

(2)
(3)

(3) (3)

W
u < − c~ − c < u < cu > c~ ~ ~ ~ ~ ~

Fig. 5. Solution of the Riemann problem (22). The number of the lines corresponds
to the eigenvalues.

case 1: if ũ > c̃.

AM = Al

QMP = Ql

AP = AM +
g Ã

ũ2 − c̃2
(Zr − Zl)

case 2: if ũ < −c̃.

AM = Ar

QMP = Qr

AM = AP −
g Ã

ũ2 − c̃2
(Zr − Zl)

case 3: if −c̃ < ũ < c̃.

AM = Al +
g Ã

2 c̃ (c̃ − ũ)
(Zr − Zl) +

ũ + c̃

2 c̃
(Ar − Al) −

1

2 c̃
(Qr − Ql)

QMP = Ql −
g Ã

2 c̃
(Zr − Zl) +

ũ2 − c̃2

2 c̃
(Ar − Al) −

ũ − c̃

2 c̃
(Qr − Ql)

AP = AM +
g Ã

ũ2 − c̃2
(Zr − Zl)

Let us mention that in the case of a pressurised flow, since the velocity is always
less (in magnitude) that the sound velocity, we are always in the case 3. Adding
the altitude in the system (21) produced an upwinding term g Ã (Zr − Zl).

The equivalent area An
i in the mesh i at the time tn can thus be updated by

the formula:

An+1
i = An

i −
∆t

hi
(QMPi+1/2 − QMPi−1/2) (23)

14



Finally, by using the updated value of the equivalent area at time tn+1, An+1
i ,

in the cell i and by performing a linearisation around An+1
i for the friction

term we get:

Qn+1
i = Qn

i +
∆t

1 +
2 g K(An+1

i , En+1
i ) |Qn

i | ∆t

An+1
i

× (24)



















−
1

hi

[

F2

(

AMi+1/2, QMPi+1/2

)

− F2

(

APi−1/2, QMPi−1/2

)]

−g
|Qn

i |Q
n
i K(An+1

i , En+1
i )

An+1
i



















where the index 2 indicates the second component of the flux vector F .

3.4 Case of a transition point.

We treat this transition point as a free boundary associated to a discontinuity
of the gradient of the pressure. The numerical treatment must be coherent
with the general case: the constant states on the left and right side of the
line ξ = 0, respectively noted UM = (AM, QM) and UP = (AP, QP ) are
obtained through the resolution of the above linear Riemann problem, but
the matrix J̃(Ul, Ur) is discontinuous (actually piecewise constant).

Assuming that the transition point propagates with a constant speed w during
a time step, the half line x = w t, is the discontinuity line of J̃(Ul, Ur).
Let us now consider U− = (A−, Q−) and U+ = (A+, Q+) the (unknown) states
respectively on the left and on the right side of the line x = w t. Both states
Ul and U− (resp. Ur and U+) corresponds to the same type of flow. Thus it
makes sense to define averaged matrices in each zone as follows:

• for x < w t, we set J̃l = J̃(Ul, Ur) = DF (Ũl) with Ũl =
Ul + U−

2

• for x > w t, we set J̃r = J̃(Ul, Ur) = DF (Ũr) with Ũr =
Ur + U+

2
.

Then we formally solve two Riemann problems and uses the Rankine-Hugoniot
jump condition through the line x = w t which writes:

Q+ − Q− =w (A+ − A−) (25)

F2(A
+, Q+) − F2(A

−, Q−) =w (Q+ − Q−) (26)

with F2(A, Q) =
Q2

A
+p(A) (we omit the E-dependency). The unknowns states

are U−, U+, UM , UP and w.
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We can consider two couples of ”twin cases”: pressure state propagating down-
stream (or upstream) as shown in the figure 6 and free surface state propa-
gating downstream (or upstream) as shown in the figure 7. The direction of

the transition point is predicted thanks to the sign of wpred =
Qr − Ql

Ar − Al

.

The case of a propagating free surface state appears to be the more complex.

3.4.1 Pressure state propagating downstream (Fig. 6).

On the left side of the line ξ = wt we have a pressurised flow and on the right
side we have a free surface flow, (the speed w of the transition point being
positive). Following Song [20] (see also [8]), an equivalent stationary hydraulic
jump must occur from a supercritical to a subcritical condition and thus the
characteristics speed satisfies the inequalities:

ũr + c̃r < w < ũl + c

where c is the sound speed for the pressure flow, ũl, ũr, and c̃r are defined by
the same formula obtained in the case of a non transition point but according
to J̃l and J̃r.

ξ= w

UM UP

x

Press. FS

U Ur

ξ= u − c~

ξ= u − c~ ~

ξ= 0
ξ= u + c~ ~

r r

U−

U+

ξ= u + c~
l

l

l

r r

Fig. 6. Pressure state propagating downstream

Therefore, only the characteristic lines drawn with solid lines are taken into
account, indeed they are related to incoming waves with respect to the cor-
responding space-time area −∞ < ξ < w. Conversely, the dotted line ξ =
ũr − c̃r, for instance, related to the free surface zone but drawn in the area of
pressurised flow is a ”ghost wave” and is not considered. Thus U+ = Ur and
Ul, U− are connected through the jumps across the characteristics ξ = 0 and
ξ = ũg − c. Eliminating w in the Rankine-Hugoniot jump relations (25)-(26),
we get U− as the solution to the nonlinear system:
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(Qr − Q−)2 = (Ar − A−) (F2(Ar, Qr) − F2(A
−, Q−)) (27)

Q− − A− (ũr − c) +
g Zr Ãl

c + ũl
= Ql − Al (ũl − c) +

g Zl Ãl

c + ũl
(28)

This system is solved numerical by a quasi-Newton method implemented in
the minpack package (see [16]). Finally we obtain UP = U−, i.e. AP = A−,
QM = QP = QMP = Q−, and the jump relation through the stationary
wave ξ = 0 gives

AM = AP −
g Ãl (Zr − Zl)

ũ2
l − c2

.

3.4.2 Free surface state propagating downstream (Fig. 7).

On the left side of the line ξ = wt we have a free surface flow and on the
right side we have a pressurised flow, (the speed w of the transition point
being positive). Following Song [20] again, the characteristic speed satisfies
the inequalities:

ũl + c̃l < w < ũr + c

A+

ξ= w

A−

Q−

Q+

Press.

UM UP

x

ξ= 0

ξ= u − c~ ~
l

ξ= u − c~
r

U U

ξ= u + c~
r

ξ= u + c~ ~
l

l r

l

l

FS

Fig. 7. Free surface state propagating downstream

There are two incoming characteristic lines with respect to the free surface
area −∞ < ξ < w (actually three with ξ = 0) and they can connect the
given left state Ul with any arbitrary free surface state UM . Thus only one
characteristic line (ξ = ũr + c) gives any information (it is the equation (29)
above) as an incoming characteristic line with respect to the pressurised zone
w < ξ < +∞. ¿From the jump relations through the characteristic ξ = 0, and
after the elimination of w in the Rankine-Hugoniot jump relations (25),(26)
we get another equation, namely equation (30) above. It remains to close the
system of four unknowns (A−, Q−, A+, Q+).
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Firstly, we use a jump relation across the transition point (with speed w) for

the total head Ψ =
u2

2
+ g h(A) + g Z arising from the equations (5) and

(15). Recall that h(A) is the water head (the water heigh in the case of a free
surface flow and the piezometric level above the bottom of the pipe for the
pressurised flow). This relation writes:

Ψ+ − Ψ− = w (u+ − u−)

This relation is equivalent to the one proposed by Whitham [22]:

(u+ − w)2

2 g
+ h(A+) =

(u− − w)2

2 g
+ h(A−) + δh

where the dissipation term δh has to be experimentally determined. In this
first approach we neglect it.
Lastly we use the relation:

w = wpred .

We have then to solve the nonlinear system:

(Qr − Q+) = (Ar − A+) (ũr + c) (29)

(Q+ − Q−) (Qr − Ql) = (Ar − Al) (F2(A
+, Q+) − F2(A

−, Q−)) (30)

(Q+)2

2 (A+)2
+ g h(A+) −

(Q−)2

2 (A−)2
− g h(A−) =

Qr − Ql

Ar − Al

(

Q+

A+
−

Q−

A−

)

(31)

(Qr − Ql) (A+ − A−) = (Q+ − Q−) (Ar − Al) (32)

This system is solved numerically by a quasi-Newton method implemented in
the minpack package (see [16]).

The states UM et UP are then obtained by the following identities:

AM = Al +
g Ãl (Zr − Zl)

2 c̃l(c̃l − ũl)
+

ũl + c̃l

2 c̃l
(A− − Al) −

1

2 c̃l
(Q− − Ql)

AP = AM +
g Ãl (Zr − Zl)

ũ2
l − c̃2

l

QM = QP = QMP = Ql +
g Ãl (Zr − Zl)

2 c̃l
+

+
ũ2

l − c̃2
l

2 c̃l

(A− − Al) −
ũl − c̃l

2 c̃l

(Q− − Ql)

Finally, the updated state An+1
i , Qn+1

i are obtained by the same relation as
in the case of a non transition point namely by the equations (23),(24).
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Let us mention that since the numerical scheme is an explicit one, the time
step size at time tn namely ∆t must be controlled by the mesh size by the
usual stability condition of Courant-Friedich-Levy:

∆t = C
inf
i∈ZZ

hi

max {|λ̃n
k,i+1/2|; 2 ≤ k ≤ 3, i ∈ ZZ }

C ∈]0, 1[ (33)

where λ̃n
k,i+1/2 is the kth eigenvalue of J̃(Un

i , Un
i+1).

3.5 Updating the state E in a mesh

After the computation of the ”pseudo wet area” An+1
i we need to have a crite-

rion to determine the state of each mesh at time tn+1, and thus to find the new
position of the transition points. Notice that the value of An+1

i is not always
sufficient to conclude: if An+1

i ≥ Amax it is clear that the mesh mi becomes
pressurised, on the other hand if An+1

i < Amax in a mesh previously pres-
surised, we do not know a priori if the new state is free surface (ρ = ρ0 and
the value of the wetted area is less than Amax) or pressurised (in depression,
with ρ < ρ0 and the value of the wetted area is equal to Amax).
So far as we do not take into account complex phenomena such that entrap-
ment of air pockets or cavitation and keeping in mind that the CFL condition
(33) ensures that a transition point crosses at most one mesh at each time
step, we postulate that:

(1) if the mesh mi is free surface at time tn, its state at time tn+1 is only
determined by the value of An+1

i and it cannot become in depression.
(2) if the mesh mi is pressurised at time tn and if An+1

i < Amax, it becomes
free surface if and only if at least one adjacent mesh was free surface at
time tn.

We set E = 1 for a pressurised flow and E = 0 else. Let En
i be the known

state of the flow in the mesh i at time tn: we have to find En+1
i , 1 = 1, · · · , N .

Thus our criterion is the following (see the figure 8):

• if En
i = 0 then :

if An+1
i < Amax then En+1

i = 0, else En+1
i = 1,

• if En
i = 1 :

if An+1
i ≥ Amax then En+1

i = 1, else En
i = En

i−1 · E
n
i+1.

Notice that this procedure allows to distinguish between free surface flow and
pressurised flow in depression when An+1

i < Amax unlike the Preissmann slot
techniques which can treat only pressurised flow with positive pression of the
water.
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maxi
n+1

A  < A

i
n+1

A   > A max

i

i

i

n

n+1

n+1

n

n+1

E  = 0

t = t

E      = 0

t = t

E     = 1

never

t = t t = t
 n  n+1

yes, if

t = t t = t
 n  n+1

yes, if

t = t t = t
 n  n+1

A    >= A maxi
n+1

A    < A
i

n+1
max

Fig. 8. Updating E

3.6 Boundary conditions

We recall that the upstream and downstream state vectors (corresponding

to x1/2 and xN+1/2) at time tn are respectively denoted Un
0 =







An
0

Qn
0





 and

Un
N+1 =







An
N+1

Qn
N+1





. ¿From a mathematical point of view, we must give as

many scalar boundary conditions as incoming characteristic curves. In the
case of a subcritical flow, say at the upstream end, An

0 = A(0, tn) and Qn
N+1 =

Q(L, tn) are given quantities or, more generally, we impose some condition
fup(A, Q, t) = 0.

Numerically, the computation of the boundary fluxes (via the resolution of the
Riemann problem (22)) requires complete state vectors that one can consider
as ”exterior” values on fictive meshes. Un

0 and Un
N+1 play this role and are

supposed to be known at time tn. Thus the problem is to determine or estimate
the boundary states Un+1

0 and Un+1
N+1.

The method described below is closely related to those studied by Dubois [6]
and Kumbaro [14] (see also [7]). It allows to update the boundary states using
known values at the same level time, so it is naturally implicit. Let us recall
the original procedure in the case of a subcritical flow at the upstream end,
for instance.

We start with given interior vector states Un+1
i (1 ≤ i ≤ N) and any given

relationship

fup(A
n+1
0 , Qn+1

0 , tn+1) = 0.

20



We have to build a complete boundary state using these data at the same
level time and not at the previous one as in the characteristic method. The
vector states W n+1

0 and W n+1
1 are expressed in the basis of eigenvectors of the

matrix J̃ in (22) where we assume that Z0 = Z1 (notice that these eigenvectors
depend on the unknown Un+1

0 ):

W n+1
0 = αn+1

0 r̃1 + βn+1
0 r̃2 + γn+1

0 r̃3 and W n+1
1 = αn+1

1 r̃1 + βn+1
1 r̃2 + γn+1

1 r̃3.

The method consists of connecting W n+1
0 to W n+1

1 by an unique jump through
the incoming characteristic x = λ̃3 t, thus setting αn+1

0 = αn+1
1 and βn+1

0 =
βn+1

1 or equivalently Qn+1
1 −Qn+1

0 = (ũn+1
1/2 + c̃1/2)(A

n+1
1 −An+1

0 ). Then we get

Un+1
0 as the solution of the nonlinear system:

Notice that we do not know a priori if the flow is subcritical at time tn+1, so we
have to test this property a posteriori. In case of a negative result, we choose
to impose a critical flow. Another difficulty may arises from the occurence of
a transition point: the treatment is similar to the interior case.

4 Numerical validation

In this section, we present our numerical results for the case of a single point
pressurised flow, namely the test proposed by Wiggert [23]. The numerical
results are then compared with the experimental ones: a very good agreement
between them is shown. Another single point pressurised flow is presented: it
is the test proposed by Zech et al. [2]. We do not dispose of clear experimental
results in Zech’s article. Nevertheless the shape of the piezometric line seems
to be in agreement by the one obtained by Zech et al..

The case of multiple points pressurised flow is numerically performed for a
circular pipe where the upstream prescribed hydrograph produces a wave in
the free surface flow whereas the downstream discharge is suddenly cut at the
time t = 50 s, producing a waterhammer. This test was constructed to see if
the method could treat such flows and was not performed in a laboratory.

Notice that in the following numerical experiments, the sound speed c for
the pressurised part of the flow is a tunable parameter. This is of course
in contradiction with the theoretical value (12) which corresponds to c ≃
1.4 103 m/s. Actually, in a model taking in account the characteristics of the
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material of a circular pipe, we should rather have (see [21] for instance):

c ≃
c

√

1 + δ
β e E

where δ is the diameter of the pipe, e is the wall thickness (assumed here to
be constant) and E is the Young’s modulus of elasticity for the wall material
(in the rigid case E = +∞ gives (12)). Moreover we should have to deal with
the entrapment of air bubles which have a non negligible effect (see [13,19] for
instance). In the case of the Wiggert’s test decribed in the next subsection, the
pipe is a complex structure and the value of c is not really known. According to
the experimental data, we were able to propose a value (or a range of values)
for c wich seems physically relevant. On the contrary, in the Preissmann slot
technique ([23,11]) the value of c is related to an arbitrary value (the width of
the slot) and cannot exceed practically 10 m/s, otherwise the method becomes
unstable.

4.1 Single point pressurised flow

The following test case, is due to Wiggert [23]. The experimental device (see
the figure 9) is an horizontal 10 m long closed pipe with width 0.51 m and
height H = 0.148 m. The Manning number is 1/K2

s = 0.012 s/m1/3. The
initial conditions are a stationary state with the discharge Q0 = 0 and the
water level h0 = 0.128 m.
Then a wave coming from the left side causes the closed channel to pressurise.
The upstream condition is a given hydrograph (y2 in the figure 10), at the
downstream end, a step function is imposed: the water level is kept constant to
h0 = 0.128 m until the wave reaches the exit. At this time, the level is suddenly
increased (see y3 in the figure 10). For the computations, these boundary
conditions have been read on Wiggert’s article and rebuilt using piecewise
polynomial interpolations (figure 11 below).
Let us define the piezometric head by:

piezo = z + H + p with















p =
c2 (ρ − ρ0)

ρ0 g
if the flow is pressurised

p = h the water height if the flow is free surface

In the figure 12, we present the piezometric line computed at 3.5 m from
the tunnel entrance (solid curve). Circles represent experimental data read on
curve hB, including maxima and minima points of the oscillating parts. We
can observe a very good agreement with the experimental data even for the
oscillations. We point out that we did not find in other papers, by authors car-
rying out the same simulation, a convenient numerical reproduction of these
oscillations : they do not treat the dynamical aspect of the pressure flow, in
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particular when using the Preissmann slot technique ([23,11]). On the other
hand, we found in M. Fuamba [8] a similar and interesting approach with a
non conservative formulation and another numerical method (characteristics).
The value of the sound speed c was taken equal to 40 m/s, roughly according
to the frequency of the oscillations observed during the phase of total submer-
sion of the tunnel. This low value can be explained by the structure of the
tunnel and by bubble flow (see [13] for instance).
We observe that the front reaches the control point at 3.6 s, in a good agree-
ment with the experimental data (less than 0.15 s late). Let us mention that
before it reaches the exit (part AB in the figure 12) the oscillations of the
pressure associated with the moving front reflect between upstream and the
front itself (since the free surface is at constant pressure) where the channel
is flooded. Beyond point B the oscillations result from the step in the down-
stream water level and they propagate in the fully pressurized flow (their
frequency was estimated using the BC part of the experimental curve).
The figure 13 gives the evolution of the front’s speed. We observe the same
behaviour as in [23]: the front quickly attains a maximum speed, decelerates
and then slowly accelerate as it approaches the tunnel exit. Moreover the val-
ues are consistent with those of Wiggert. Notice that the speed of the front is
not very dependent on the value of c.

Another test case is described by Zech et al. in [2]. It consists in the pressuri-
sation of steep slope circular pipe. Unfortunately, we do not dispose of the
exact measures and we do not present this test as a validation of our method
but as a representative test of a severe pressurisation.

The experimental set-up features a 12.74 m long perspex pipe with a 145 mm
inner diameter. The pipe consists of three parts with bottom slopes 0.01954
m/m (0-3.48 m), 0.01704 m/m (3.48-9.23 m) and 0.01255 m/m (9.23-12.74
m) respectively. The Manning roughness coefficient is 1/K2

s = 0.009 s/m1/3.
Due to the relatively steep slope of the pipe, free surface flows at the upstream
extremity are almost supercritical while the flow regime at the downstream
end depends on the water level. Fast variations of this water level can be
obtained by operating an adjustable weir in a downstream tank.

The boundary conditions are the following. At the upstream, a constant dis-
charge of 4.2 l/s is kept. The experiment starts from a steady supercritical
flow. The adjustable downstream weir is rapidly raised, supressing the outflow
from the downstream tank. As the downstream water level rises, a hydraulic
jump is forced into the pipe and migrates upstream. When the jump comes
near the upstream end, the downstream weir is abruptly lowered back. This
leads to a sudden decrease of the downstream level. A fast transient, in the
form of a negative wave returns the flow to its initial conditions.

The hydrograph of the downstream end is presented in the figure 14. The
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figure 15 presents the steady supercritical flow at time t = 0 s. The figure 16
is reproduced from [2]. The figure 17 presents the piezometric line at the same
times as in the figure 16. We can firstly observe that the conservation of steady
states with constant discharge is obtained and secondly that the piezometric
lines and the speed of the wave front seem to be in a good agreement with the
ones obtained by Zech et al., at least at the qualitative level.

4.2 Multiple points pressurised flow

For this test, we consider a 150 m long circular pipe of diameter 1 m with slope
0.003 m/m. The Manning roughness coefficient is 1/K2

s = 0.012 s/m1/3. The
simulation starts from a steady state as a free surface flow with a discharge Q =
0.1 m3/s and the water level is chosen as y = 0.35 m. The boundary condition
at the upstream end is a prescribed hydrograph and at the downstream end is
a prescribed discharge. Between the time 0 ≤ t ≤ 5 the upstream water level
increases linearly between y = 0.35 m and y = 0.6 m. After the time t = 5 s,
the upstream water level is kept constant to the value y = 0.6 m. Between
the time 0 ≤ t ≤ 50, the downstream discharge is kept constant to the initial
value Q = 0.1 m3/s and at the time t = 50 s, the discharge is cut in 0.01s (see
the figure 18).

This type of boundary upstream condition produces a free surface flow with a
wave travelling from the upstream to the downstream. And due to the slope
of the pipe, this wave reaches the top of the pipe and produces a two-point
pressurised flow (see the figure 19 to see the profiles of the wave coming from
downstream). Let us remark that since from the times t = 0 s to t = 47 s,
the downstream discharge is constant, the pressurised flow is only produced
by the downstream boundary condition. This fast speed pressurised flow will
reach the downstream end and since the discharge is constant it will produce
a first waterhammer.

The profile at the time t = 47.5 s shows this waterhammer. Another water-
hammer is produced by the sudden cut of the discharge and the profile at
the time t = 50.01 s shows this second waterhammer. The profile at the time
t = 61 s shows in fact only a single transition point. A careful analysis of the
flow (which is performed by the variable E in the numerical code) shows that
after this transition point, the flow is pressurised but in depression. This is the
reason why the piezometric line is under the top of the pipe. (see the figure
20 to see these three profiles).

In the figure 21, we present the mixed final stationary flow.

One can see (with this test), that the modelisation of mixed flows by the
dual model and the proposed numerical resolution method can handle more
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that only one transition point and also mixed flows with a pressurised flow in
depression. The treatment of the transition is fully dynamic.

The numerical method was implemented in Fortran 90 in the code roemix

which is able to deal also with only free surface or only pressure flows (as
well as mixed flows). It was completely validated in these particular cases
situations using test cases supplied by the Center in Hydraulics Engineering
of Electricité De France (CIH-EDF) (see [1]) The execution time under the
operating systems LinuX or Windows XP with 1 Mo free memory and 2 GHz
CPU clock does not exceed a few seconds depending on the spatial mesh size
and the final time desired.

5 Conclusion and perspectives

We have described in this paper a new method to simulate mixed flows and
the related phenomena using a finite volumes method. The model and the
numerical method reproduce correctly a laboratory test and can deal with
multiple points of transition between the two type of flows. A current adapta-
tion of this model is performed to deal with flows in convergent or divergent
pipes. Another feature which is added is the dilatation of the pipe when the
flow is pressurised. We have described the whole model in a recent article (see
[1]) and it can be used to deals with this phenomenon. The last domain of
investigation is the air entrapment phenomenon.
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10 m

51 cm

gategate glass

14,8 cm

concrete

wood

Fig. 9. Experimental device (adapted from Wiggert [23])

Fig. 10. Wiggert : experimental data. y2 : upstream hydrograph, y3 : downstream
hydrograph. hA, hB , hC , hD : pressure head at 0.5 m, 3.5 m, 5.5 m and 9.5 m from
the tunnel entrance (location of recording instruments) ([23]).
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Fig. 11. Wiggert’s test : upstream hydrograph (up) and downstream water level
(down).

29



 0

 0.05

 0.1

 0.15

 0.2

 0  2  4  6  8  10  12  14  16  18

m

time (s)

Piezometric line (m) at location  x = 3.5 m

A
B

C

piezometric line (computed)
top of the pipe

experimental data

Fig. 12. Piezometric line at location x = 3.5m (corresponding to hB) with
c = 40 m/s

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2  2.5  3  3.5  4  4.5  5  5.5  6  6.5

ve
lo

ci
ty

 (
m

/s
)

time (s)

Fig. 13. Velocity of the transition point

30



 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0  20  40  60  80  100  120  140  160  180  200

m

time (s)

Piezometric line at downstream end

piezometric line
top of the pipe

Fig. 14. Prescribed hydrograph at the downstream end of the pipe
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Fig. 16. Results from Capart,Sillen and Zech ([2] p. 667)
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Fig. 17. Results from the code ROEMIX
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Fig. 20. The waterhammer coming from downstream.
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