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Abstract

We present a one dimensional model for compressible flows in a deformable pipe
which is an alternative to the Allievi equations and is intended to be coupled in
a ”natural way” with the shallow water equations to simulate mixed flows. The
numerical simulation is performed using a second order linearly implicit scheme
adapted from the Roe scheme. The validation is performed in the case of water
hammer in a rigid pipe: we compare the numerical results provided by an industrial
code with those of our spatial second order implicit scheme. It appears that the
maximum value of the pressure within the pipe for large CFL numbers and a coarse
discretisation is accurately computed.
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boundary conditions,

1 Introduction

The work presented in this article is the first step in a more general project:
the modelisation of unsteady mixed flows in open channels and in pipes and
its finite volume discretisation. Since we are interested in flows occuring in
closed pipes it may happen that some parts of the flow are free-surface (this
means that only a part of the cross-section of the pipe is filled) and other parts
are pressurised (this means that all the cross-section of the pipe is filled). The
Saint Venant equations, which are written in a conservative form, are usually
used to describe free surface flows of water in open channels. They are also
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used in the context of mixed flows using the artifice of the Preissman slot
[19],[5] : Cunge and Wegner [6] studied the pressurised flow in the pipe as if
it were a free-surface flow by assuming a narrow slot to exist in the upper
part of the pipe, the width of the slot being calculated to provide the correct
sonic speed. This approach has been credited to Preissmann. Implementing
the Preissmann slot technique has the advantage of using only one flow type
(free-surface flow) throughout the whole pipe and of being able to easily quan-
tify the pressure head when the pipe pressurises. Nevertheless, as pointed out
by several authors (see [18] for instance) the pressurising phenomenon is a
dynamic shock requiring a full dynamic treatment even if inflows and other
boundary conditions change very slowly. In addition, the Preissmann slot tech-
nique is unable to take into account the depressurisation phenomenon which
occurs during a waterhammer.

The commonly used model to describe pressurised flows in pipe-lines is the
system of Allievi equations. These equations are usually solved with the char-
acteristics method (see [20] for instance). The resulting system of first order
partial differential equations is not written under a conservative form since
this model is derived by neglecting some acceleration terms. This non conser-
vative formulation is not appropriate for a finite volume discretization. Above
all, it appears that a ”unified” modelisation with a common set of conserva-
tive variables (see below) could be of a great interest for the coupling between
free-surface and pressurised flows and its numerical simulation could be more
effective.

In this paper, we derive a 1D model from 3D compressible Euler equations
by integration over sections orthogonal to the flow direction and by using a
linearized pressure law. We will consider entirely rigid as well as deformable
pipes (through the use of a Hooke’s law for the deformation of the pipe due
to the change of pressure). This model is a 1D first order hyperbolic system
of partial differential equations written in conservative form which is formally
very close to the Saint-Venant equations for shallow water. This particular
fact is used to derive a model and a numerical scheme for mixed flows in an
article (in press at the present time) [2]. The goal of the present paper is essen-
tially to build the new model for pressurised flows, to describe a finite volume
discretisation and to carry out a code to code validation by the resolution of
standard critical tests of waterhammer.

The paper is organised as follows. In section 2, we present a formal derivation
of the model from 3D compressible Euler equations. Section 3 is devoted to the
finite volume discretisation of the proposed model. Since the CFL condition
for explicit scheme is very restrictive, we choose, following [11,8], to discretise
the system of first order conservative partial differential equations by a linear
implicit finite volume scheme to avoid the usual CFL condition for an explicit
spatial discretization. For the boundary condition treatment, we propose an
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adaptation of a classical method ([7,14] for instance) to the implicit case.
We recall the principle of the first order explicit Roe scheme and then we
adapt it to build a linearly implicit method. Then the method to build the
”missing” boundary conditions is described, and the second order MUSCL
scheme is formulated. Finally in section 4, we present the numerical validation
of this study by the comparison between the resolution of this model and the
resolution of the Allievi equation solved by the research code belier used at
Center in Hydraulics Engineering of Electricité De France (EDF) [21] for the
case of critical waterhammer tests.

2 Formal derivation of the model

This model is derived from 3D system of compressible Euler equations by inte-
grating over sections orthogonal to the flow axis. Hence, we neglect the second
and third equation for the conservation of the momentum. In the cartesian
coordinate system (shown in the figure 1), where the vector ~i is along the
pipe axis, the equation for conservation of mass and the first equation for the
conservation of momentum are:

∂tρ + div(ρ ~U) = 0 (1)

∂t(ρ u) + div(ρ u ~U) = Fx − ∂xP (2)

with the speed vector ~U = u~i + v~j + w~k = u~i + ~V . We use the linearized
pressure law:

P = Pa +
ρ− ρ0

βρ0

(3)

in which ρ represents the density of the liquid, ρ0, the density at atmospheric
pressure Pa and β the water compressibility coefficient (which is the inverse
of the bulk modulus of elasticity). The sound speed is then given by:

c =
1

βρ0

. (4)

Practically, β = 5.0 10−10 m2/N and thus c ' 1400 m/s.

Exterior strengths, with x-component Fx, are the gravity ~g and the friction
−ρgSf

~i given by the Manning-Strickler law (see [19]),

Sf = K(A) u |u | with K(A) =
1

K2
s Rh(A)4/3

where A = A(x, t) is the given surface area of a section Ω(x, t) normal to the
pipe axis at position x and at time t, (see Fig. 1), Ks > 0 is the Strickler
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coefficient of roughness and Rh(A) is the so called hydraulic radius given by

Rh(A) =
A

Pm

, Pm being the perimeter of Ω. For instance, in the case of a

fully-filled circular pipe with diameter δ we get Rh = δ/4.

Then equations (1)-(2) become

∂tρ + ∂x(ρ u) + div(y,z)(ρ ~V ) = 0 (5)

∂t(ρ u) + ∂x(ρ u2) + div(y,z)(ρ u ~V ) = ρg(sin θ − Sf )− c2 ∂xρ (6)

Equations (5)-(6) are integrated over a cross-section Ω(x, t) (Fig.1, left).
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Fig. 1. Geometric characteristics of the pipe.

In the following, overlined letters represent averaged quantities over Ω(x, t).
For equation (5) we have successively, with the approximation ρu ' ρ u:

∫

Ω(x,t)

∂tρ = ∂t

∫

Ω(x,t)

ρ−
∫

∂Ω(x,t)

ρ ∂t ~m · ~n,

where m ∈ ∂Ω, ~m stands for
−−→
Om and ~n =

~m

|~m| is the outward unit vector

at the point m in the Ω-plane (see Fig. 1),∫

Ω(x,t)

∂x(ρ u) = ∂x(ρ uA)−
∫

∂Ω(x,t)

ρ u ∂x ~m · ~n,

∫

Ω(x,t)

div(y,z)(ρ ~V ) =
∫

∂Ω(x,t)

ρ ~V · ~n.
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Therefore we get the following equation for the conservation of the mass:

∂t(ρA) + ∂x(ρ Q) =
∫

∂Ω(x,t)

ρ
(
∂t ~m + u ∂x ~m− ~V

)
· ~n , (7)

where we have set Q = Au the discharge of the flow.

Next, with the approximations ρu ' ρ u and ρu2 ' ρ u2, we get for the
equation (6):

∫

Ω(x,t)

∂t(ρ u) = ∂t

∫

Ω(x,t)

ρ u−
∫

∂Ω(x,t)

ρ u ∂t ~m · ~n = ∂t(ρ Q)−
∫

∂Ω(x,t)

ρ u ∂t ~m · ~n,

∫

Ω(x,t)

∂x(ρ u2) = ∂x

∫

Ω(x,t)

ρ u2−
∫

∂Ω(x,t)

ρ u2 ∂x ~m·~n = ∂x(ρ u2 A)−
∫

∂Ω(x,t)

ρ u2 ∂x ~m·

~n,∫

Ω(x,t)

div(y,z)(ρ u ~V ) =
∫

∂Ω(x,t)

ρ u ~V · ~n,

c2
∫

Ω(x,t)

∂xρ = c2 ∂x

∫

Ω(x,t)

ρ− c2
∫

∂Ω(x,t)

ρ ∂x ~m · ~n = c2 ∂x(ρA)− c2 ρ ∂xA

Thus the equation (6) becomes the equation for the conservation of momen-
tum:

∂t(ρQ) + ∂x

(
ρ Q

2

A
+ c2 ρA

)
= g ρA(sin θ − Sf ) + c2 ρ ∂xA+

+
∫

∂Ω(x,t)

ρ u
(
∂t ~m + u ∂x ~m− ~V

)
· ~n (8)

To treat the integral terms appearing in equations (7) and(8), we use the
no-leak condition at the tube wall ∂Ω which writes:

~U · ~N = ∂t ~m · ~N,

where ~N is the outward unit vector at the point m. It means that the normal
velocity of the water at the point m ∈ ∂Ω and the normal velocity of m (due
to the deformation of the pipe under pressure rise or decrease) are the same.
Thus, in the present case of axial symmetry, an easy computation gives:

(
∂t ~m + u ∂x ~m− ~V

)
· ~n = (∂xr) (∂t ~m ·~i) ' tan φ (∂t ~m ·~i)

where r = ωm = r(x, t) is the radius of Ω and φ = (~n, ~N) ∈] − π/2, π/2[,
with the orientation given by (~i, ~n) (see Fig 1, right). For instance we have
tan φ < 0 in contracting sections. On the other hand, neglecting the tangential
deformations in the longitudinal sections of the pipe, we set ∂t ~m = (∂tR) ~N
where R = R(x, t) is the radius of normal curvature at the point m along ∂Ω
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(see Fig. 1, right ) satisfying R = r/ cos φ. Neglecting the time variations of

φ, this leads to ∂t ~m ·~i = −tan φ

π δ
∂tA and we get :

∫

∂Ω(x,t)




ρ

ρ u




(
∂t ~m + u ∂x ~m− ~V

)
· ~n ' 1

A




ρA

ρ Q


 (− tan2 φ) ∂tA.

Using tan φ =
1

2
∂xδ0, where δ0 is the diameter at rest, omitting the overlined

notations and setting the conservative variables: M = ρA and D = ρ Q, the
equation (7) for the conservation of the mass becomes:

∂t(M) + ∂x(D) = −1

4

∂tA

A
(∂xδ0)

2 M. (9)

To treat the term ∂tA, we use a linear elastic law for the deformation of the
section due to the change of pressure, derived from the Hooke’s law for an

elastic material: dR =
R2

eE
dP . Setting

A = A(x, t) = S(x, P (x, t)), (10)

for a pipe with a circular cross-section, this law writes (see [19] for instance,
in the case of a constant radius):

∂S

∂P
=

Sδ

e E cos φ
(11)

where δ = δ(x, t) is the diameter of the pipe, e is the wall thickness (assumed to
be a constant for the sake of simplicity), E is the Young’s modulus of elasticity

for the wall material. φ = φ(x) is the angle (~n, ~N) between the outward unit
vector of the cross-section Ω at a point m of the inner wall of the pipe and the
outward unit vector ~N at the same point (see Fig. 1, right side). It is assumed
to be constant in time for the sake of simplicity.

From (10) and (11) we get

∂xA = ∂xS +
Aδ

eE cos φ
∂xP

and then, using (3), the term c2 ρ ∂xA in (8) writes:

c2 ρ ∂xA = c2 ρ
δ

eE cos φ
A∂xρ + c2 ρ ∂xS

= c4 ρ
δ

eE cos φ
∂x(ρA)− c4 ρ2 δ

eE cos φ
∂xA + c2 ρ ∂xS
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This leads easily to

c2 ρ ∂xA = ∂x((c
2 − a2) ρA) + a2 ρ ∂xS + ρA∂xa

2

with a given by
c√

1 +
ρ

ρ0

δ

β e E cos φ

(for a circular pipe) and approximated

by:

a = a(x, t) =
c√

1 +
δ(x, t)

β e E cos φ(x)

. (12)

a represents the speed of sound for the considered pipe and takes into account
the deformation of the pipe (by the dependancy in time) and also the non-
uniformness of the pipe by the dependancy in the diameter at the position x.
In the infinitely rigid case (E = +∞), we recover the speed of sound c given
by the equation (4) whereas in the rigid case for a non-uniform pipe, we must
take into account the variation of the section with respect to the position x
and thus the variation of the speed of the sound ∂xa.

The term ∂xS is approximated by ∂xS0 where S0 is the area of the cross-section
at rest (S0(x) = S(x, Pa)). Thus the equation (8) for the conservation of the
momentum becomes:

∂t(D) + ∂x

(
D2

M
+ a2 M

)
= g M sin θ(x)− g K(A)

D|D|
M

+ M ∂xa
2+

+a2 M

A
∂xS0 − 1

4

∂tA

A
(∂xδ0)

2 D

(13)

Lastly, proceeding for ∂tA in the same way as for ∂xA, we get:

∂tA = k ∂tM (14)

with k = k(x, t) =
δ(x, t)

eE cos φ(x)
a(x, t)2.

We can now formulate the system of coupled first order hyperbolic partial
differential equation obtained for the two following cases :

For a rigid pipe
∂tU + ∂xF (U) = Gr(x, U) (15)

where

U = (ρA , ρQ)t = (M , D)t , F (U) =

(
D ,

D2

M
+ a(x)2 M

)t

and the source term Gr writes:

Gr(x, U) =

(
0 , g M sin θ(x)− g K(A)

D|D|
M

+ M ∂xa
2 + a(x)2 M

A
∂xS0

)t

(16)
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For a deformable pipe

∂tU + ∂xF (U) = Gd(x, U) (17)

∂tA = k ∂tM (18)

where

U = (ρA , ρQ)t = (M , D)t , F (U) =

(
D ,

D2

M
+ a(x)2 M

)t

and the source term Gd writes :

Gd(x, U) = Gr − 1

4

∂tA

A
(∂xδ0)

2 U (19)

Let us mention that the above model is formally close to the system of Saint-
Venant for shallow water, where the unknown state vector U and the flux
F (U) are given by:

U = (A , Q)t and F (U) =

(
Q ,

Q2

A
+ g I1(A)

)t

,

A = A(x, t) being the so-called wetted area and g I1(A) arising from the hydro-
static pressure law. Then a common set of conservative variables is for instance

U =

(
Aeq =

ρ A

ρ0

, Qeq =
ρQ

ρ0

)t

(”free surface -equivalent area” and ”free sur-

face -equivalent discharge”). The two models mainly differ by the pressure law.
It is the reason why it seems natural to formulate the mixed flow problems
as a first order hyperbolic system of partial differential equations with dis-
continuities (in the gradient of the pressure) located at the interface between
the two types of flows (free surface/pressurised). The modelisation, the treat-
ment of this type of discontinuity, the numerical results and the experimental
validation will be presented in a forthcoming paper [4,2].

3 The finite volume discretisation and its implicit formulation

For the numerical approximation of (9), (13), (14) with suitable initial and
boundary conditions, we use a finite volume method with a Roe-like nume-
rical flux in a partial linear implicit version. We present here a second order
extension of the implicit first order scheme described in [3] and adapted to a
pipe with contracting or expanding sections.
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The main axis of the pipe, with length L, is divided in N meshes mi =
[xi−1/2, xi+1/2], 1 ≤ i ≤ N such that x 1

2
= 0 and xN+ 1

2
= L. We denote

by xi the center of mi and by hi its length. ∆t denotes the timestep. We
set t0 = 0 and for n ≥ 0, tn+1 = tn + ∆t. The discrete unknowns are

Un
i =




Mn
i

Dn
i


 , 1 ≤ i ≤ N, 0 ≤ n ≤ nmax that approximate the mean

value of U(x, t) on mi × [tn, tn+1], and An
i that approximates A(xi, tn). The

upstream and downstream boundary states Un
0 , Un

N+1 are associated to fictive
meshes denoted 0 and N + 1.
Let R be a diagonalizable d × d real matrix with real eigenvalues λ1, · · ·λd

associated to eigenvectors r1, · · · , rd: diag(λi) = P−1 M P . We set |R| =
P diag(|λi|) P−1 (“absolute value” of the matrix R).

3.1 Principle of explicit 1st order Roe scheme. Well balanced VF-Roe scheme

In this section we recall the principle of the explicit first order Roe scheme and
explain how to bypass the difficulties which arise in the case of a deformable
pipe and/or a non uniform geometry.

Roe’s scheme, derived from Godunov’s method, is based on the use of an
approximate Riemann solver (see [8] for instance). It takes the conservative
form:

Un+1
i − Un

i

∆t
+

F n
i+1/2 − F n

i−1/2

hi

= Gn
i 1 ≤ i ≤ N, n ≥ 0. (20)

For all 1 ≤ i ≤ N , U0
i is computed as the averaged value of the initial data

U0 on the mesh mi. The right hand side Gn
i is a centered approximation of

the contribution of the source terms in the mesh mi, the numerical flux F n
i+1/2

is given by F n
i+1/2 = F (U∗

i+1/2(0, U
n
i , Un

i+1)) where U∗
i+1/2(ξ, Ul, Ur) is the exact

solution, along the line ξ = x/t, of the linearized Riemann problem:

(PRL)





∂U

∂t
+ R(Ul, Ur)

∂U

∂x
= 0

U(x, 0) =





Ul if x < 0,

Ur if x > 0,

the function R with values in the set of 2 × 2 real matrices being subject to
the conditions

(1) R is continuous,
(2) R(Ul, Ur) · (Ul − Ur) = F (Ul)− F (Ur) (Roe’s condition, ensuring conser-

vativity)
(3) R(Ul, Ur) is diagonalizable with real eigenvalues.
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The two first conditions imply R(U,U) = JF (U), Jacobian matrix of the
function F (consistency). In its centered form, the numerical flux takes the
form:

F n
i+1/2 =

F (Un
i ) + F (Un

i+1)

2
+

1

2
|R(Un

i , Un
i+1)| · (Un

i − Un
i+1)

The timestep (at time tn) in the resulting scheme is classically subject to a
“Courant-Friedrich-Lévy type” condition:

(CFL) ∆t ≤ C
inf

1≤i≤N
hi

max {
∣∣∣λ̃n

k,i+1/2

∣∣∣ ; 1 ≤ k ≤ 2, 1 ≤ i ≤ N}
C ∈]0, 1[

where λ̃n
k,i+1/2 is the kth eigenvalue of the matrix R(Un

i , Un
i+1). C is called the

CFL coefficient.
Following Roe’s method ([16] in the case of one-dimensional Euler equations)
we get, in the case of an entirely rigid pipe, the following Roe matrix:

R(Ul, Ur) =




0 1

c2 − ũ2 2ũ


 , with ũ =

ul

√
Ml + ur

√
Mr√

Ml +
√

Mr

.

The eigenvalues of R(Ul, Ur) are λ̃1 = ũ− c < 0 < λ̃2 = ũ + c, associated

to the right eigenvectors r̃1 =




1

ũ− c


 and r̃2 =




1

ũ + c


.

In the case of a deformable pipe, we have no longer such a Roe matrix because
of the dependency of the sound speed a upon x (via cos φ and the diameter
δ). Moreover, in the case of a non constant slope and overall in the case of a
contracting or expanding section, the centered treatment of the corresponding
source terms gives a scheme which is unable to preserve steady states.

Following Gallout ([9]) we can bypass the non existence of a Roe matrix by
writing a priori the scheme under the conservative form (20) with F n

i+1/2 com-

puted as above, but using a matrix R(Un
i , Un

i+1) = JF (U) where U is some

intermediate state between Un
i and Un

i+1 (for instance U =
Un

i + Un
i+1

2
). This

matrix is subject to the conditions 1 and 3 and to the consistency condition
R(U,U) = F (U). The corresponding scheme is called a VF-Roe scheme in [9].
We choose this approach, combined with an upwind treatment of the part
of the source terms due to both the slope (term gM sin θ) and the geometry

(terms a2 M

A
∂xS0 and M ∂xa

2).

For the sake of simplicity, we built our first order explicit scheme without
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taking in account the time derivative of A (and thus assuming A = S0). The
general case is obtained via a straightforward splitting method that we briefly
explain at the end of the next subsection.
Following Leroux et al. [13,17] we use a piecewise constant function to appro-
ximate the bottom of the pipe as well as the area S0. Let be z the elevation
of the pipe axis at position x. Setting

Z = z − a2

g
ln S0 and Ψ(x) =

a2(x)

c2

(for the case of circular pipe Ψ(x) =

(
1 +

δ(x)

β e E cos φ(x)

)−1

), we first remark

that

g M sin θ + a2 M

S0

∂xS0 = −g M ∂xZ −M (ln S0) c2 ∂xΨ. (21)

Next, adding the equations ∂tZ = 0 and ∂tΨ = 0 to the system (9)-(13) and
setting

W = (Z, Ψ,M, D)t,

we get the following system:

∂tW + ∂xΦ(x,W ) + g M ∂xZ + M (ln S0 − 1) c2 ∂xΨ = TS(W ) (22)

with

Φ(x,W ) =




0

0

D

D2

M
+ a2 M




TS(W ) =




0

0

0

−g K(A)
D |D|

M




Such an approximation of the topography and the geometry introduces two
stationary waves for each local Riemann problem at the interfaces xi+1/2.
Let W n

i be an approximation of the mean value of W on the mesh mi at
time tn. Integrating the above equation (22) over ]xi−1/2, xi+1/2[×[tn, tn+1[ with
piecewise constant data at time tn, we deduce an explicit Finite Volume scheme
written as follows:

W n+1
i = W n

i −
∆t

hi

(
Φ

(
W ∗

i+1/2(0
−,W n

i ,W n
i+1)

)
−

Φ
(
W ∗

i−1/2(0
+,W n

i−1,W
n
i )

))
+

+∆t TSn
i

(23)

where TSn
i = TS(W n

i ) and W ∗
i+1/2(ξ = x/t,W n

i ,W n
i+1) is the exact or ap-

proximate solution of the Riemann problem at interface xi+1/2 associated to
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the left and right states W n
i and W n

i+1. Notice that neither the topography
nor the variation of the section and the sound speed appear explicitly in this
formulation (∂xZ = 0 and ∂xΨ = 0 on ]xi−1/2, xi+1/2[) but contributes to the
computation of the numerical flux. Following Gallouët et al. [10] we compute
W ∗

i+1/2(0
±,W n

i ,W n
i+1) using an approximate Riemann solver of VF-Roe type:

let be

B(x,W ) =




0 0 0 0

0 0 0 0

0 0 0 1

g M c2M ln S0(x) a(x)2 − u2 2 u




the convection matrix associated to the non-conservative form (22), then
W ∗

i+1/2(ξ = x/t,W n
i ,W n

i+1) is the exact solution, along the line ξ = x/t, of
the linear Riemann problem





∂tW + J̃ ∂xW = 0

W = (Z, Ψ,M, D) =





W n
i = (Zi, Ψi,M

n
i , Dn

i )t if x < 0

W n
i+1 = (Zi+1, Ψi+1,M

n
i+1, D

n
i+1)

t if x > 0

(24)

with J̃ = J̃(W n
i ,W n

i+1) = B

(
xi+1/2,

W n
i + W n

i+1

2

)
.

J̃ has the eigenvalues λ̃1 = λ̃2 = 0, λ̃3 = ũn
i+1/2−ãi+1/2 and λ̃4 = ũn

i+1/2+ãi+1/2,
with

ũn
i+1/2 =

Di + Di+1

Mi + Mi+1

and ã2
i+1/2 =

a2
i + a2

i+1

2
, a2

i = c2Ψ(xi).

The eigenvectors are:

r̃1 =




ã2
i+1/2 − (ũn

i+1/2)
2

0

−g M̃n
i+1/2

0




r̃2 =




c2 ln(S0)i+1/2

−g

0

0




r̃3 =




0

0

1

ũn
i+1/2 − ãi+1/2




and r̃4 =




0

0

1

ũn
i+1/2 + ãi+1/2




with M̃n
i+1/2 =

Mn
i + Mn

i+1

2
and (S0)i+1/2 = S0(xi+1/2). The solution of the

Riemann problem (24) consists in four constant states connected by shocks

12



propagating along the lines ξ = x/t = λi. Since the velocity is practically
always less (in magnitude) that the sound velocity, we have −ã < ũ < ã and
then λ̃2 < 0 = λ̃1 < λ̃3. Since the values of the “corrected elevation” Z and
of Ψ are known, we are looking for the states on each sides of the line ξ = 0
denoted by (Mn,−

i+1/2, D
n,−
i+1/2) for the left side and (Mn,+

i+1/2, D
n,+
i+1/2) for the right

side (see Figure 2 above).

(3)

(4)

W
i+1Wi

n n

M
i+1/2

D
i+1/2
n,−

M
i+1/2

Dn,+
i+1/2

n,+n,−
(1) (2)

x

t

Fig. 2. Solution of the Riemann problem (24). The number of the lines corresponds
to those of the eigenvalues.

Moreover, as the third component of r̃1 is null, the discharge D is continuous
through the line ξ = 0. Thus Dn,−

i+1/2 = Dn,+
i+1/2. In the sequel, we denote Dn

i+1/2

this value. A classical computation gives:

Mn,−
i+1/2 = Mn

i +
g M̃n

i+1/2

2 ãi+1/2 (ãi+1/2 − ũn
i+1/2)

(Zi+1 − Zi)+

+
M̃n

i+1/2 ln(S0)i+1/2

2 ãi+1/2 (ãi+1/2 − ũn
i+1/2)

(a2
i+1 − a2

i )+

+
ũn

i+1/2 + ãi+1/2

2 ãi+1/2

(Mn
i+1 −Mn

i )−

− 1

2 ãi+1/2

(Dn
i+1 −Dn

i )

13



Dn
i+1/2 = Dn

i −
g M̃n

i+1/2

2 ãi+1/2

(Zi+1 − Zi)−

−M̃n
i+1/2 ln(S0)i+1/2

2 ãi+1/2

(a2
i+1 − a2

i )+

+
(ũn

i+1/2)
2 − ã2

i+1/2

2 ãi+1/2

(Mn
i+1 −Mn

i )−

− ũn
i+1/2 − ãi+1/2

2 ãi+1/2

(Dn
i+1 −Dn

i )

Mn,+
i+1/2 = Mn,−

i+1/2+
g M̃n

i+1/2

(ũn
i+1/2)

2 − ã2
i+1/2

(Zi+1 − Zi)+

+
M̃n

i+1/2 ln(S0)i+1/2

(ũn
i+1/2)

2 − ã2
i+1/2

(a2
i+1 − a2

i )

and then, for instance, W ∗
i+1/2(0

−,W n
i ,W n

i+1) = (Zi, Ψi,M
n,−
i+1/2, D

n
i+1/2)

t.
Adding the variables Z and Ψ in the system (22) produced upwinding terms:

g M̃n
i+1/2 (Zi+1 − Zi) and M̃n

i+1/2 ln(S0)i+1/2 (a2
i+1 − a2

i ).

Considering the two last components of (23) we get our explicit first order
scheme under the form:

Un+1
i − Un

i

∆t
+

F n,−
i+1/2 − F n,+

i−1/2

hi

= Hn
i 1 ≤ i ≤ N, n ≥ 0. (25)

where

F n,±
i+1/2 = F (U∗

i+1/2(0
±, Un

i , Un
i+1))

with

U∗
i+1/2(0

±, Un
i , Un

i+1) = (Mn,±
i+1/2, D

n
i+1/2)

t

and

Hn
i = −g K(Ai)

Dn
i |Dn

i |
Mn

i

= H(Un
i ).

Practically, with β = 5.0 10−10 m2/N and in the undeformable case, the (CFL)
condition gives ∆t ≤ 0.7 10−3 ∆x. This severe restriction is a motivation for
the construction of an implicit scheme.
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3.2 First order implicit scheme

A fully implicit scheme based on the previous approach would write

Un+1
i − Un

i

∆t
+

F n+1,−
i+1/2 − F n+1,+

i−1/2

hi

= Hn+1
i (26)

with

F n+1,±
i+1/2 = F (U∗

i+1/2(0
±, Un+1

i , Un+1
i+1 )) (27)

Hn+1
i =−g K(Ai)

Dn+1
i

∣∣∣Dn+1
i

∣∣∣
Mn+1

i

= H(Un+1
i ). (28)

It would obviously be of high cost and not easily extended to second order.
Another approach (see [11,9]) consists in linearizing F and the source term
around their values at time tn. Then we get, instead of (26)-(27)-(28)

Un+1
i − Un

i

∆t
+

F̃ n+1,−
i+1/2 − F̃ n+1,+

i−1/2

hi

= H̃n+1
i (29)

with

F̃ n+1,±
i+1/2 = F n,±

i+1/2 + JF
(
U∗

i+1/2(0
±, Un

i , Un
i+1)

)
·

·
(
U∗

i+1/2(0
±, Un+1

i , Un+1
i+1 )− U∗

i+1/2(0
±, Un

i , Un
i+1)

)

H̃n+1
i = Hn

i + JH(Un
i ) · (Un+1

i − Un
i )

Thanks to the homogeneity property of the flux function F ,

JF (U) · U = F (U)

the numerical flux is given by:

F̃ n+1
i+1/2 = JF (U∗

i+1/2(0
±, Un

i , Un
i+1)) · (U∗

i+1/2(0
±, Un+1

i , Un+1
i+1 )) (30)

At this stage (29) is a linear system of 2N equations and 2N + 4 scalar un-
knowns because the upstream and downstream states Un+1

0 and Un+1
N+1 have to

be determined. In the next subsection we specify our procedure to close this
system.
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Lastly, let us explain briefly how to deal with a deformable pipe. The cross
area An

i being known at time tn in mesh mi, the source term

−1

4

∂tA

A
(∂xδ0)

2 U

is discretized by

kn
i (∂xδ0)

2
i

4 An
i ∆t

(Mn+1
i −Mn

i )




Mn
i

Dn
i




according to the following time discrete version of the equation (14)

An+1
i = An

i + kn
i (Mn+1

i −Mn
i ) (31)

where we set:

• kn
i =

δn
i

eE cos φ(xi)
(an

i )2,

• δn
i diameter asociated to An

i , and

• an
i =

c√
1 +

δn
i

β e E cos φ(xi)

.

This leads to a minor modification of the system arising from (29).
Notice that it is convenient, in the source term H(Un

i ), to replace K(Ai) by

K(An
i ) and in the matrix J̃ to replace ã2

i+1/2 by (ãn)2
i+1/2 =

(an
i )2 + (an

i+1)
2

2
.

The cross area A is then updated through (31). Notice that the computation
of A allows us to get the pressure via ρ = M/A and the discharge Q = D/ρ.

3.3 Boundary conditions

In order to achieve the description of the implicit scheme, we present now a
way to take the boundary conditions into account. We recall that the upstream
and downstream state vectors (corresponding to x1/2 and xN+1/2) at time tn

are respectively denoted Un
0 =




Mn
0

Dn
0


 and Un

N+1 =




Mn
N+1

Dn
N+1


. ¿From a

mathematical point of view, we must give as many scalar boundary conditions
as incoming characteristic curves, that is one at each end of the pipe. For
example Mn

0 = M(0, tn) and Dn
N+1 = D(L, tn) are given quantities or, more

generally, we impose some condition fu(M, D, t) = 0 at the upstream end and
fd(M, D, t) = 0 at the downstream end.

Numerically, the computation of the boundary fluxes (via the resolution of the
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Riemann problem (24)) requires complete state vectors that one can consider
as ”exterior” values on fictive meshes. Un

0 and Un
N+1 play this role and are

supposed to be known at time tn. Thus the problem is to determine or estimate
the boundary states Un+1

0 and Un+1
N+1 in (29).

Using an explicit characteristic method (for instance) is not convenient because
it is subject to a CFL type condition. The method described below is an
adaptation to the implicit scheme of those studied by Dubois [7] and Kumbaro
[14] (see also [8]). It allows to update the boundary states using known values
at the same level time, so it is naturally implicit. Let us recall the original
procedure in the case of the upstream state, for instance.

We start with given interior vector states Un+1
i (1 ≤ i ≤ N) and any given

relationship
fu(M

n+1
0 , Dn+1

0 , tn+1) = 0.

We have to build a complete boundary state using these data at the same
level time and not at the previous one as in the characteristic method. The
vector states W n+1

0 and W n+1
1 are expressed in the basis of eigenvectors of the

matrix J̃ in (24) where we assume that Z0 = Z1 and Ψ0 = Ψ1 (notice that
these eigenvectors depend on the unknown Un+1

0 ):

W n+1
0 = αn+1

0 r̃1 + βn+1
0 r̃2 + γn+1

0 r̃3 + δn+1
0 r̃4

and W n+1
1 = αn+1

1 r̃1 + βn+1
1 r̃2 + γn+1

1 r̃3 + δn+1
1 r̃4.

The classical BC method consists of connecting Un+1
0 to Un+1

1 by an unique
jump through the incoming characteristic x = λ̃4 t, thus setting

αn+1
0 = αn+1

1 , βn+1
0 = βn+1

1 and γn+1
0 = γn+1

1

or equivalently Dn+1
1 − Dn+1

0 = (ũn+1
1/2 + ã1/2)(M

n+1
1 − Mn+1

0 ). Then we get

Un+1
0 as the solution of the nonlinear system:





Dn+1
1 −Dn+1

0 = (ũn+1
1/2 + ã1/2)(M

n+1
1 −Mn+1

0 )

fu(M
n+1
0 , Dn+1

0 , tn+1) = 0.
(32)

Applying this method for nonlinear boundary conditions (BC in brief) at
time tn+1 is not compatible with the framework of linearised implicit method
as described above as above. We propose to apply it at time tn+1 after a first
step which consists in completing (29) with four linear equations thanks to
a modified procedure that we present further. Solving the resulting system
supplies a first estimate of interior and unknown boundary states, then we
make use of the standard BC method. Our adaptation to the implicit scheme
consists of two steps.
First step : we apply the previous procedure using the eigenvectors of the
matrix J̃ at time tn instead of time tn+1. From (32) we get the linear equation
(with unknowns Mn+1

0 and Dn+1
0 ):
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Dn+1
1 −Dn+1

0 = (ũn
1/2 + ã1/2)(M

n+1
1 −Mn+1

0 ) (33)

and we use a linearized version f lin
u (Mn+1

0 , Dn+1
0 , tn+1) = 0 of the upstream

boundary condition (around the vector state Un
0 ). Similarly for the downstrean

state we get

Dn+1
N+1 −Dn+1

N = (ãN+1/2 − ũn
N+1/2) (Mn+1

N+1 −Mn+1
N ) (34)

and f lin
d (Mn+1

N+1, D
n+1
N+1, tn+1) = 0.

The linear system arising from (29) is now completely determined.
Second step : equipped with interior vector states issued from the first step,
we apply the standard BC method (32) at time tn+1.

Remark 1 Commonly used boundary conditions are for instance an upstream
constant total head and the downstream flow Q(t) (as in the presented nu-

merical results). The total load in the pipe is defined by H = z +
u2

2g
+ p,

where z is the altitude (m), u the flow speed (m/s), p the relative pressure

(m) expressed in equivalent water height defined by p =
c2 (ρ− ρ0)

ρ0 g
. We im-

pose at the entrance of the pipe with altitude z0 a constant load H0. Thus

we get

(
Dn+1

0

Mn+1
0

)2

+
2Mn+1

0

βρ2
0A0

= 2g(H0 − z0) +
2

βρ0

as boundary datum in

(32). The downstream boundary condition is Qn+1
N+1 = Q(tn+1) which writes

Dn+1
N+1 An+1

N+1

Mn+1
N+1

= Q(tn+1) with An+1
N+1 = An

N+1+kn
N+1 (Mn+1

i −Mn
i ) and a suitable

definition of kn
N+1. A similar technique as above is then applied.

3.4 Space second order implicit scheme

The main inconvenience with usual Roe-type schemes (as the Godunov one)
as well as the implicit scheme is that this type of discretisation is very dif-
fusive. One way to improve the scheme is to perform a second order space
discretisation (which can be coupled with a second-order Runge-Kutta time
discretisation). This type of improvement (for explicit schemes) seems to be
practically a relaxation of the CFL condition more than a better space ap-
proximation.

We recall in the following section the principle of the MUSCL method for a
second order explicit space discretisation and we propose a linearly implicit
version of this commonly used method to improve spatial approximation.
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3.4.1 MUSCL method

The MUSCL method (Monotonic Upstream Scheme for Conservation Laws),
due to Van Leer ([15]), is based on a “reconstruction” step which consists in
constructing a piecewise linear function from cell-averages. Then we can solve
new local Riemann problems extrapolating the averaged states in each cell:
this method, quite simple to implement, is a natural extension of the previous
scheme.

The steps are as follows (with the same notations as in the explicit scheme):

(1) From given cell-averages Un
i , 1 ≤ i ≤ N at time tn, define slope vectors

Σn
i =




Σn
i,1

Σn
i,2




(2) On each cell ]xi−1/2, xi+1/2[ define a piecewise linear approximate solution

Un(x) = Un
i + (x− xi)Σ

n
i

(3) Compute fluxes:

F n,±
i+1/2 = F (U∗

i+1/2(0
±, Un,+

i , Un,−
i+1 ))

where




Un,+
i = Un

i +
hi

2
Σn

i

Un,−
i+1 = Un

i+1 −
hi+1

2
Σn

i+1

(4) Compute updated cell-averages Un+1
i applying (25).

The first step (slopes reconstruction) is crucial. A natural way would consist in

using the central difference
Un

i+1 − Un
i−1

xi+1 − xi−1

which is a second order approximation

of U ′(xi). In order to satisfy some monotonicity and TVD properties, we apply
a limitation procedure, for instance the following classical one (see [12] for
instance). For k = 1, 2 we set

Σn
i,k = minmod

(
Un

i+1,k − Un
i,k

xi+1 − xi

,
Un

i,k − Un
i−1,k

xi − xi−1

)
(35)

where the minmod function is defined over R2 by

minmod(a, b) =





min(|a|, |b|) sgn(a) if sgn(a) = sgn(b),

0 else.
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x x x x x x
i ii+1 i+1i−1 i−1

monotonic case extremum

Fig. 3. slopes reconstruction.

3.4.2 An adaptation to the implicit scheme

A direct application of this method to the previous first order scheme would
introduce non linearities due to slopes computations. Instead we propose the
following procedure in three steps:

First step :

¿From the averaged states Un
i , i = 1, ..., N , at time tn, we define the slope

vectors Σn
i following (35). Then we compute at each interface xi+1/2 the cor-

responding states Un,+
i , Un,−

i+1 and finally U∗
i+1/2(0

±, Un,+
i , Un,−

i+1 ).

Second step :

A first estimate Ũn+1
i of Un+1

i is computed applying the first order scheme
(29) together with the treatment of the boundary conditions as in section 3.3.
We deduce a first estimate Σ̃n+1

i of the slopes Σn+1
i .

Third step :

The second order fully implicit scheme, would write under the form (26) with

F n+1,±
i+1/2 = F (U∗

i+1/2(0
±, Un+1,+

i , Un+1,−
i+1 ))

Hn+1
i = H(Un+1

i ) .

The linear implicit second order scheme is obtained by linearizing F n+1,±
i+1/2

around Un,+
i and Un,−

i+1 , by using in (24) a matrix J̃ associated to states
(Un,+

i , Un,−
i+1 ) at time tn instead of (Un+1,+

i , Un+1,−
i+1 ) and finally by using the

estimated slope Σ̃n+1
i to compute Un+1,+

i and Un+1,−
i+1 . It leads to a scheme

under the form:
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Un+1
i − Un

i

∆t
+

F̃ n+1,−
i+1/2 − F̃ n+1,+

i−1/2

hi

= H̃n+1
i (36)

with

F̃ n+1,±
i+1/2 = JF (U∗

i+1/2(0
±, Un,+

i , Un,−
i+1 )) · (U∗

i+1/2(0
±, Un+1,+

i , Un+1,−
i+1 ))

H̃n+1
i = Hn

i + JH(Un
i ) · (Un+1

i − Un
i )

where





Un+1,+
i = Un+1

i +
hi

2
Σ̃n+1

i

Un+1,−
i+1 = Un+1

i+1 −
hi+1

2
Σ̃n+1

i+1

Finally the updated states Un+1
i are solutions of the linear system arising

from (36) combined with the equations (33)-(34) where Mn+1
1 , Dn+1

1 , Mn+1
N

and Dn+1
N are respectively replaced with Mn+1,−

1 , Dn+1,−
1 , Mn+1,+

N and Dn+1,+
N .

The treatment of the boundary conditions is performed using (32) modified
in a similar way. Finally, in the case of a deformable pipe, the procedure is
the same as in the first order implicit scheme.

4 Numerical validation in the case of a constant radius circular
pipe

We present now numerical results of a water hammer test. The pipe of circular
cross-section of 2 m2 and thickness 20 cm is 2000 m long. The altitude of the
upstream end of the pipe is 250 m and the angle is 5◦. The Young modulus is
23 109 Pa since the pipe is supposed to be built in concrete. The total upstream
head is 300 m. The initial downstream discharge is 10 m3/s and we cut the
flow in 5 seconds. The number of mesh points is either 1000 or 150 depending
on the tests and is presented for each of them. Let us define the piezometric
line by:

piezo = z + δ + p with p =
c2 (ρ− ρ0)

ρ0 g
.
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4.1 Comparison with the solution of Allievi equations

To ensure that the model that we propose describes precisely flows in closed
pipe-lines, we present a validation of it by comparing numerical results of the
proposed model with the ones obtained by solving Allievi equations by the
method of characteristics with the so-called belier code used by the Center
in Hydraulics Engineering of Electricité De France (EDF) [21]. Our code is
written in Fortran 77.

A first simulation of the water hammer test was done for a CFL coefficient
equal to 1 (i.e. CFL = 1) and a spatial discretisation of 1000 mesh points (the
mesh size is equal to 2 m). In the figure 4, we present a comparison between
the results obtained by our first order scheme and the ones obtained by the
”belier” code at the middle of the pipe: the behavior of the piezometric line
and the discharge at the middle of the pipe. One can observe that the results
for the proposed model are in very good agreement with the solution of Allievi
equations. A little smoothing effect and absorption may be probably due to the
first order discretisation type. It is the reason why we perform the same test,
in the same condition (CFL = 1 and 1000 mesh points) with the second order
scheme. The figure 5 shows that this smoothing effect is much less important
with this second order scheme. It is the reason why in the following numerical
results, we consider the second order scheme with a CFL condition equal to 1
as the reference solution.

4.2 Influence of the CFL coefficient

The purpose of our scheme is to perform a solution with a not accurate spatial
detail but with very low computational costs. As argued before, we choose to
perform a linear implicit spatial discretisation (first order and second order) to
get rid of the CFL condition imposed for the stability of explicit discretisation
of hyperbolic systems of partial differential equations. Since the proposed space
discretisation is only linear implicit (to keep a low CPU time), we can expect
a deterioration of the results for CFL > 1. Therefore, we performed the same
test as above for different CFL coefficients and 1000 mesh points. We present
in the figure 6, the same quantities (piezometric line and discharge) at the
middle of the pipe for the second order space discretisation scheme. One can
observe that even for CFL = 10, the results are good from the point of
view of the maximum pressure calculation and that the second order implicit
discretisation is very stable in regard of the time discretisation. The very good
behavior of this scheme from the point of view of the time discretisation is
a very good argument for using it, even though we must solve at each time-
step a linear system (which contains only 6 diagonals). Moreover, we wanted
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to study the behavior of the scheme from the point of view of the spatial
discretisation. Thus we perform the same test for different CFL coefficients
and for only 150 mesh points (the mesh size is then 13,33 m). Before doing
this test, we suspected a bad behavior for a coarse space mesh and great
CFL coefficients since the scale of the physical effects of a water hammer is
very small against this space mesh size and this time-step. Figure 7 shows the
behavior of the second order scheme for a coarse grid discretisation and for
different CFL numbers. A great smoothing effect is present but it seems that
the highest pressure value is well computed.

Nevertheless, the hydraulics engineers are interested in the value of the highest
pressure in the pipe to make a good evaluation of the size and the strength of
the pipe. Therefore we present in table 1 the highest piezometric line computed
in the pipe and the relative error with the highest piezometric line computed
by the code belier for the preceding water hammer test, Pmax = 688.442.
The relative error is very small and therefore even for a coarse mesh and a
great CFL coefficient, the highest piezometric level is ”well” computed in a
very small CPU time.

CFL 1 2 5 10

Nx = 1000 688 685 680 673

0.04% 0.4% 1.2% 2.2%

Nx = 150 677 669 655 638

1.7% 2.8% 4.9% 7.3%
Table 1
Highest piezometric level and relative error (in bold).

4.3 Case of contracting or expanding sections

In order to illustrate the effect of the variations of the sections and the im-

portant contribution of the term of geometry (terms a2 M

A
∂xS0 and M ∂xa

2

in equation (13)), we consider the case of an immediate flow shut-down in a
frictionless cone-shaped pipe. We thus computed the waterhammer pressure
rise at the middle of the pipe ∆H and relate it to the pressure rises calculated
for an equivalent pipe segment ∆Heq as presented in [1,19].
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Let us hereby recall how do we transform a real pipe with expanding or con-
tracting sections to an equivalent pipe of constant dimension. The similarity
conditions should be preserved in order to transform a pipe with expanding or
contracting sections to an equivalent uniform pipe segment. These conditions
imply that the following properties should not change in the equivalent pipe
segment, compared to the real pipe of the same length L :

(1) inertia forces due to the same way of flow shutdown,
(2) pressure wave propagation time.

Condition (1) leads to the following formula for the equivalent cross-sectional
area Seq of the pipe segment :

Seq =
L

∫ L

0

dx

S(x)

The equivalent pressure wave speed aeq can be found from the condition (2):

aeq =
L

∫ L

0

dx

a(x)

We thus perform tests of flows shut-down at downstream end of a cone-shaped
pipe of lenght L = 1000 m, the upstream diameter D1 being always equal to 1
m whereas the downstream diameter D2 varies. We use 100 mesh points and
the CFL number is chosen equal to 0.8. Before the shut-down, the downstream
discharge is 1m3/s. Figure 8 shows the ratio ∆H/∆Heq versus the ratio D1/D2.
The model and the proposed finite volume discretisation shows a very good
agreement with the equivalent pipe theory.

4.4 Effect of the pipe deformation

To see the effect of the deformation of the pipe on the values of the piezometric
line and the discharge, we perform the same water hammer test where we take
into account the deformation of the pipe. Let us recall that from equation (12)
the speed of the sound is in this case non constant and depends on the Young’s
modulus, the thickness of the wall and the diameter of the pipe. We present in
the figure 9 the piezometric line, the discharge and the diameter of the pipe at
the middle of the pipe computed by the second order scheme with CFL = 1
and 1000 mesh points.

One can remark that in the deformable case, the pressure is less high since
the pipe absorbs a great part of the stress and the frequency of the smaller
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(since the speed of the sound is smaller in the deformable case). These results
must be viewed as an illustration of our model.
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Fig. 4. Validation of the model: 1st order scheme
Piezometric line (top) and discharge (bottom) at the middle of the pipe
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Fig. 5. Validation of the model: 2nd order scheme
Piezometric line (top) and discharge (bottom) at the middle of the pipe
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Fig. 6. Numerical behavior for a fine space mesh and different CFL numbers
Piezometric line (top) and discharge (bottom) at the middle of the pipe
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Fig. 7. Numerical behavior for a coarse space mesh and different CFL numbers
Piezometric line (top) and discharge (bottom) at the middle of the pipe
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A Nomenclature

c = pressure wave speed in a rigid pipe a = pressure wave speed

β = inverse of the bulk modulus elasticity g = gravitational acceleration

Pa = athmospheric pressure P = pressure of liquid

ρ0 = liquid mass density at pressure Pa ρ = mass density at press. P

Ω = cross section, with boundary ∂Ω A = pipe cross-sectional area

ω = center of Ω ~m = −→ωm, where m ∈ ∂Ω

x = longitudinal coordinate t = time

S = function of x and P s.t. A = S(x, P ) u = x-liquid mean velocity

~U = velocity ~V = velocity in the Ω-plane

p = elev. of hydr. grade line (=
P

ρ0 g
) Q = discharge (= Au)

L = pipe length z = elevation of pipe bottom

E = pipe wall modulus of elasticity e = pipe wall thickness

~N = outward unit normal vector δ = pipe inner diameter

φ = angle between ~n and ~N Pm = pipe inner perimeter

Rh = hydraulic radius (=
A

Pm
) Sf = friction

Ks = Strickler coefficient θ = slope of pipe axis

~n = outward unit normal vector in the Ω-plane
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Volumes for Complex Applications III: Problems and Perspectives, pages 463–
470. HERMES Science Publications, 2002.

[4] C. Bourdarias and S. Gerbi. Etude et mise en oeuvre d’un schéma de type Roe
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Houille Blanche, pages 33–39, 1964.

[7] F. Dubois. An introduction to finite volumes. In O. Pironneau and
V. Shaidurov, editors, Computational Methods and Algorithms (Related
chapters), volume 2.6 of Encyclopedia of Mathematical Sciences. Encyclopedia
of Life Support Systems, 2001.

[8] R. Eymard, T. Gallouet, and R. Herbin. The finite volume method. In P. Ciarlet
and J.L. Lions, editors, Handbook of numerical analysis, pages 713–1020. North
Holland, 2000. This paper appeared as a technical report four years ago.

[9] T. Gallouet. Rough schemes for complex hyperbolic systems. In F. Benkhaldoun
R. Vilsmeier and D. Hanel, editors, Finite Volumes for Complex Applications
II: Problems and Perspectives. HERMES Science Publications, 1996.

[10] T. Gallouet, J. M. Hérard, and N. Seguin. Some approximate Godunov schemes
to compute shallow-water equations with topography. Comput. Fluids, 32:479–
513, 2003.

[11] T. Gallouet and J.M. Masella. Un schéma de Godunov approché. (A rough
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