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1. ABSTRACT

A finite element modelling for large deformations response of active, incompressible,
nonlinear elastic and transversely isotropic soft tissue is presented. A new constitu-
tive law describing the mechanical properties of the active muscle during the whole
cardiac cycle is proposed. Three-dimensional finite elements were used to obtain
solutions to a free active contraction and uniaxial extension of a rectangular sam-
ple assuming negligible body forces and inertia. The problems were chosen for the
existence of analytical solutions for finite element model validation.

2. INTRODUCTION

Few FE studies for active myocardium have been developed for ventricular wall
stress analysis [1, 2]. In the previous works, the active stress tensor is not derived
from a time-dependent strain energy function, but is written as an unidirectional
time-dependent tension in the fiber direction. The purposes of this paper are to:
(i) formulate an active three-dimensional material law for a nonlinear hyperelastic,
transversely isotropic and incompressible continuum medium, which allows us to de-
scribe continuously the cardiac cycle by using time-dependent activation functions,
(ii) derive the related three-dimensional FE and (iii) test the accuracy and conver-
gence of the proposed numerical methods.
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3. THE MECHANICAL MODEL AND ITS VARIATIONAL FORMULATION

3.1 Constitutive law for the active cardiac tissue

To be consistent with our mathematical formulation, the letter Φ is used for non
elastic gradient tensor and the letter F is used for elastic gradient tensor. The
activation of the muscle fibers changes the properties of the material and at the
same time contracts the muscle itself. To have a continuous elastic description
during the activation of the myocardium, we used an approach similar to the one
proposed by Ohayon and Chadwick [3], Taber [4]. From its passive zero-stress state
P , the activation of the muscle fibers is modeled by two transformations (Fig. 1).
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The first one (from state P to virtual state A0) changes the material properties
without changing the geometry, and the second one (from A0 to A) contracts the
muscle without changing the properties of the material. Thus, the former is not
an elastic deformation and is described by the gradient tensor ΦPA0

= I where I

is the identity matrix. In that first transformation, only the strain energy function
is modified using an activation function βW (t), where t is the cardiac cycle time.
The second transformation is an elastic deformation caused by the active tension
delivered by the fibers and is described by the gradient tensor FA0A . Finally,
external loads are applied to state A deforming the body through FAC into C. Thus
the global transformation from state P to state C is a non elastic transformation
(ΦPC = FA0CΦPA0

), but can be treated mathematically as an elastic one because
ΦPC = FA0C . The change of the material properties of the myocardium during
the cardiac cycle is described by a time-dependent strain-energy function per unit
volume of state P noted W (EPH, t):

W (EPH, t) = Wpas(EPH) + βW (t)W f
act(EPH) (1)

where EPH is the Green’s strain tensor at an arbitrary state H calculated from
the zero strain state P (the state H could be one of the states A0, A or C shown
in figure 1), Wpas represents the contribution of the surrounding collagen matrix

and of the passive fiber components, W f
act arise from the active component of the

embedded muscle fibers, and βW (t) is an activation function equal to zero at end-
diastolic state and equal to one at end-systolic state (0 ≤ βW (t) ≤ 1). The last term



of the right side of the equation gives the variation of the mechanical muscle fibers
properties during the cardiac cycle. We treat the myocardium as a homogeneous,
incompressible and hyperelastic material transversely isotropic with respect to the
local muscle fiber direction. This last direction is characterized in an arbitrary state
H by the unit vector fH . In this study, the strain-energy function is [5]

Wpas =
a

b

(

eb(I1−3) − 1
)

+
af

bf

(

ebf (I4−1) − 1 − bf (I4 − 1)
)

Wact =
cf

df

(

I4 + 1
I4
− 2

)df
(2)

where a, b, af , bf , cf , df are material constants and I1, I4 are two strain invariants
given by I1(EPH) = tr CPH and I4(EPH) = fP · CPHfP where CPH is the right
Cauchy-Green strain tensor (CPH = 2EPH + I ). Note that I4 is directly related to
the fiber extension λf (I4 = λ2

f).

To incorporate the active contraction, an active fiber stress T (0) was applied in the
deformed fiber direction fC [1, 2] Hence, during the cardiac cycle, the Cauchy stress
tensor in state C (noted τC) is given by

τ C = −pCI + ΦPC

∂W (EPC, t)

∂EPC

ΦT
PC + βT (t)T (0)fC ⊗ fC (3)

where pC is the Lagrangian multiplier resulting of the incompressibility of the mate-
rial [6], and the symbol ⊗ denotes the tensor product. The maximal active tension
T (0) exists also in the expression of the active strain energy proposed by Lin and
Yin [7] and could be identified to the constant 2Ca

5 (see Eq.(3) in Lin and Yin [7]).
The active tension βT (t) T (0) is drived by the activation function βT (t) equal to zero
at end-diastolic state and equal to one at end-systolic state (0 ≤ βT (t) ≤ 1).

3.2 Variational formulation

The undeformed body state P contains a volume V bounded by a closed surface
A, and the deformed body state is, as before, noted C. The corresponding position
vectors, in cartesian base unit vectors, are R = Y ReR and r = yrer , respectively.
However, we write the equations with suitable curvilinear systems of world coor-
dinates noted ΘA in the reference configuration (state P) and θα in the deformed
configuration (state C). In this paper we use the same conventional notations for
vectors, tensors and coordinates systems than Costa et al. [8], where: (i) capital
letters are used for coordinates and indices of tensor components associated to state
P, and lower case letters are related to state C, and (ii) G and g are the base
vectors in states P and C, respectively, for which parenthetical superscript indi-
cates the associated coordinate system (for example G

(x)
I = ∂R/∂XI = R

(x)
,I and

g
(x)
i = ∂r/∂xi = r

(x)
,i ).

The Lagrangian formulation of the virtual works principle is given by [6]

∫

V

P IJΦ·α
J ∇I(δuα) dV =

∫

V

ρ(bα − γα)δuα dV +

∫

A2

s.δu dA (4)

where P IJ are the components of the second Piola-Kirchhoff stress tensor P re-
ferred to the base tensor G

(x)
I ⊗ G

(x)
J , Φ·α

I = ∂θα/∂XI are the components of the



gradient tensor ΦPC in the base tensor g
(θ)
α ⊗ G(x)I , δu = δuαg

(θ)α is an arbi-
trary admissible displacement vector, ∇I(δuα) = ∂δuα/∂XI − g

(θ)
α,I · g

(θ)βδuβ are the

components of the covariant differentiation vector δu in the base vectors g(θ)α (i.e.
∇I(δu) = ∇I(δuα)g(θ)α). The previous differentiation is done with respect to the
locally orthonormal body coordinates ( XI , I = 1, 2, 3) which coincide with the lo-
cal muscle fiber direction in state P . The material density in the undeformed body
state P is ρ, b = bαg

(θ)
α is the body force vector per unit mass, γ = γαg

(θ)
α is the

acceleration vector, s is the surface traction per unit area of A, and A2 is the part
of A not subject to displacement boundary conditions. The Lagrangian formulation
for incompressibility is given by

∫

V

(

det g
(x)
IJ − 1

)

q dV = 0 (5)

where g
(x)
IJ is the metric tensor and q is an arbitrary admissible pressure. Eqs.(4)-(5)

represent the variational formulation of a system of nonlinear partial differential
equations.

4. RESULTS

Through this paper we use a three dimensional finite element with Lagrange tri-
linear interpolation for the displacements and uniform pressure [9] to compute an
approximate solution of Eqs.(4)-(5) on a rectangular mesh, where we neglect the
acceleration and body forces (b = 0, γ = 0). We simulate the loading of a thin
sample of myocardium (1.0 × 1.0 × 0.1 cm3) in which the fibers are uniformly ori-
ented in one direction Y1. The coefficents involved in the energy equations (2) are
[5]: a = 0.81 kPa, b = 1.5, af = 1.08 kPa, bf = 2, cf = 55 kPa, df = 1.8, and
T (0) = 6, 14 kPa. All the stresses presented in the numerical results are the physical
Cauchy stresses (noted σij). Note that for reasons of symmetry, in the following
simulations, we solve only for a quarter of the sample with appropriated kinematic
boundary conditions.

4.1 Passive and active uniaxial tests

This section is devoted to the numerical simulation of an uniaxial extension of the
material. This simulation is a common experimental protocol for mechanical tis-
sue testing. These cases are performed by applying equal forces at the nodes of
the two opposites element edges. For the uniaxial test in the fiber direction we set
σ11 6= 0 , σ22 = σ33 = 0. For the uniaxial test in the cross-fiber direction we set
σ11 = 0 , σ22 6= 0 , σ33 = 0. Figure 2 show a very good agreement between the
exact and the computed solutions obtained for the passive state (βW = βT = 0) and
for the active state (βW = βT = 1). More precisely in both cases the L2 norm of the
error is less than 10−12. One can see that in the passive and active simulations the
fiber direction is significantly stiffer than the cross fiber one.

4.2 Free contraction tests

These cases are performed without applying any displacements or forces at the node
of the four element edges, but just by activated the medium. In this simulation,



we set σ11 = σ22 = σ33 = 0. These computations are made when the change of
rheology occurs (βW (t) = βT (t) = sin2(πt)), which corresponds to real states, or
for the virtual states (βW (t) = 0 and βT (t) = sin2(πt)). This last case simulates
the contraction of the specimen without change of material properties which may
occur in some particular biological tissues or pathologies. We present in figure 3, the
comparison between the exact and the computed solution in the passive and active
states. Again the L2 norm of the error is less than 10−12.
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Figure 2: Stress-stretch relations in the fiber direction (curves a) and cross fiber direction

(curves b). The lines are the analytical values and the symbols are the computed ones.

A- Passive uniaxial tests. B- Active uniaxial tests.
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Figure 3: Time evolution of the stretch ratio during free contraction tests of a thin

myocardium sample. Results with the assumption of no change of rheology (βW = 0,

βT (t) = sin2(πt)) in the fiber direction (curve a) and in the cross fiber direction (curve

b). Simulation of a more realistic case (βW (t) = βT (t) = sin2(πt)) in the fiber direction

(curve a’) and in the cross fiber direction (curve b’). The lines are the analytical values

and the symbols are the computed ones.

5. CONCLUSION

Based on the work of Costa et al. [8] done on the passive myocardium, we have
derived the FE equation for the active soft tissue. This present work is the first
implementation of a recently proposed active material law for the myocardium,
including the time-dependent strain energy function during muscle contraction, in a



numerical simulation technique. The formulation used a three-dimensional cartesian
FE, which has been successfully tested by comparing the numerical and exact or
approximate analytical solutions for a variety of quasi-static equilibrium problems
in finite elasticity assuming negligible body forces. This model may serve as one of
the basic adjustment mechanism of living tissue to the various combinations of loads
in the fiber and cross-fiber directions, which prevail in some biological tissue. This
FE method has been developed for large deformations of active cardiac tissue and
other incompressible, nonlinear elastic, active, anisotropic materials. Thus, several
features are incorporated specifically for active ventricular myocardium, but may be
useful for a variety of applications in soft tissue biomechanics, such as pathological
blood vessels with hypertension. This numerical tool may be adapted for large scale
problems such as modeling the heart or artery, by the use of an element by element
method on a parallel computer.

REFERENCES

1. P.H.M. Bovendeerd, T. Arts, J.M. Huyghe, D.H. van Campen, and R.S.
Reneman. Dependance of local left ventricular wall mechanics on myocardial
fiber orientation: a model study. J. Biomech., 25:1129–1140, 1992.

2. A.D. McCulloch, L.K. Waldman, J. Rogers, and J. Guccione. Large scale
finite element analysis of the beating heart. Crit. Rev. Biomed. Eng., 20:427–
449, 1992.

3. J. Ohayon and R.S. Chadwick. Effects of collagen microstructure on the
mechanics of the left ventricle. Biophys. J., 54:1077–1088, 1988.

4. L.A. Taber. On a nonlinear theory for muscle shells: Part II- Application
to the beating left ventricle. J. Biomech. Eng., 113:63–71, 1991.

5. J. Ohayon, H. Cai, P.S. Jouk, Y. Usson, and A. Azancot. A model of
the structural and functional development of the normal human fetal left
ventricle based on a global growth law. Comp. Meth. Biomech. & Biomed.

Engin., 5(2):113–126, 2002.
6. L. E. Malvern. Introduction to the mechanics of a continuous medium.

Prentice-Hall, 1969.
7. D.H.S. Lin and F.C.P. Yin. A multiaxial constitutive law for mammalian

left ventricular myocardium in steady-state barium contracture or tetanus.
J. Biomech. Eng., 120:504–517, 1998.

8. K.D. Costa, P.J. Hunter, J.S. Wayne, L.K. Waldman, J.M. Guccione, and
A.D. McCulloch. A three-dimensional finite element method for large elastic
deformations of ventricular myocardium: Part I - Cylindrical and spherical
polar coordinates. ASME J. Biomech. Eng, 118:452–463, 1996.

9. R. Glowinsky and P. Le Tallec. Augmented lagrangian and operator-splitting

methods in nonlinear mechanics. SIAM, Philadelphia, PA, 1989.


