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A THREE DIMENSIONAL FINITE ELEMENT METHOD FOR A BIOLOGICAL

ACTIVE SOFT TISSUE

C. Bourdarias1, S. Gerbi1, C. Oddou2 and J. Ohayon3

Abstract. We present a finite element method for large deformations response of an active incom-

pressible nonlinear elastic and transversely isotropic soft tissue. The functional form of the strain

energy function presented describes the mechanical properties of the active biological soft tissue and

uses a time-dependent activation function. In addition we give the finite element equations for such

a constitutive law. Assuming negligible body forces and inertia, a three-dimensional cylindrical ele-

ment is used to obtain solution to an active contraction of a finite thick-wall anisotropic cylinder. The

problem is chosen for the existence of an exact solution for the finite element model validation.

Résumé. Nous présentons une méthode d’éléments finis pour la simulation en élasticité non linéaire et

en grandes déformations des déplacements d’un tissu musculaire actif, incompressible, transversalement

isotrope. La fonction d’énergie présentée ici décrit les propriétés mécaniques du tissu actif et fait

intervenir une fonction d’activation dépendant du temps. Supposant les forces internes et d’inertie

négligeables, nous utilisons un élément cylindrique pour calculer les déplacements lors de la contraction

active d’un cylindre fini à paroi épaisse et anisotrope. Les cas tests choisis permettent de valider la

méthode grâce à la connaissance d’une solution analytique.

Introduction

Several numerical models, using finite element (FE) analysis, were proposed to simulate the heart continuously
during the phases of the cardiac cycle [1–4]. In these previous studies, two approaches were used to model the
living tissue. In both of them, the end-diastolic behavior of the muscle was derived from a passive strain-energy
function expressed per unit of volume of the passive zero-stress state. Additionally, an active stress tensor
was introduced to simulate the contraction of the biological tissue. The main limitation of the first modeling
approach is that no active strain-energy function were used to obtain the active stress tensor, which suggests that
the activated living tissue is not view as a continuum. In the second approach an active strain-energy function
is introduced but an additional intuitive kinematics transformation of the zero-stress state is needed to derive
the unloaded active state. This last point corresponds to the main limitation of this second modeling approach.
Nevertheless Lin and Yin [6] proposed a continuum approach without any additional kinematics transformation
but only for two specific states of the cardiac cycle (passive and maximal active states). Therefore, the purpose
of this work was to propose a new method to model the material law of the living tissue, which avoids the
previous limitations and allows to describe continuously the whole cardiac cycle. In addition, the finite element
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(FE) formulation with the proposed law was tested by considering simple cases, which are rectangular samples
under different boundary conditions, as well as a finite thick-wall cylinder submitted to an internal pressure.

1. The mechanical model and its variational formulation

Constitutive law for the active artery tissue- To be consistent with our mathematical formulation, the
letter Φ is used for non elastic gradient tensor and the letter F is used for elastic gradient tensor.The activation
of the muscle fibers changes the properties of the material and at the same time contracts the muscle itself. To
have a continuous elastic description during the activation of the tissue, we used an approach similar to the
one proposed by Ohayon and Chadwick [5], Taber [2], Lin and Yin [6]. From its passive zero-stress state P ,
the activation of the muscle fibers is modeled by two transformations (Fig. 1). The first one (from state P
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Figure 1. Description of the active rheology approach.

to virtual state A0) changes the material properties without changing the geometry, and the second one (from
A0 to A) contracts the muscle without changing the properties of the material. Thus, the former is not an
elastic deformation and is described by the gradient tensor ΦPA0

= I where I is the identity matrix. In that
first transformation, only the strain energy function changing the rheology is modified using a time-dependent
activation function β(t) (0 ≤ β(t) ≤ 1). The second transformation is an elastic deformation caused by the
active tension delivered by the fibers and is described by the gradient tensor FA0A . Finally, external loads
are applied to state A deforming the body through FAC into C. Thus the global transformation from state
P to state C is a non elastic transformation (ΦPC = FA0CΦPA0

), but can be treated mathematically as an
elastic one because ΦPC = FA0C . The change of the material properties during the activation is described by
a time-dependent strain-energy function per unit volume of state P noted W (EPH , t):

W (EPH , t) = Wpas(EPH) + β(t)W f
act(EPH) (1)

where EPH is the Green’s strain tensor at an arbitrary state H calculated from the zero strain state P (the
state H could be one of the states A0, A or C shown in figure 1), Wpas represents the contribution of the

surrounding collagen matrix and of the passive fiber components, W f
act arise from the active component of the

embedded muscle fibers. The last term of the right side of the equation gives the variation of the mechanical
muscle fibers properties during the activation. We treat the medium as a homogeneous, incompressible and
hyperelastic material transversely isotropic with respect to the local muscle fiber direction. This last direction
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is characterized in an arbitrary state H by the unit vector fH . In this study, we modified the strain-energy
function suggested by Lin and Yin [6] by substracting the beating term and introducing an activation function
β(t) which allows to describe continuously the phases of the cardiac cycle:

Wpas(EPH) = Cp
1 (eQ − 1) (2)

with Q = Cp
2 (I1 − 3)2 + Cp

3 (I1 − 3)(I4 − 1) + Cp
4 (I4 − 1)2 (3)

and W f
act(EPH ) = Ca

1 (I1 − 3)(I4 − 1) + Ca
2 (I1 − 3)2 + Ca

3 (I4 − 1)2 + Ca
4 (I1 − 3) (4)

where (Cp
i , i = 1, · · · , 4) and (Ca

i , i = 1, · · · , 4) are material constants and I1, I4 are two strain invariants
given by I1(EPH) = tr CPH and I4(EPH) = fP ·CPH fP where CPH is the right Cauchy-Green strain tensor
(CPH = 2EPH + I ). Note that I4 is directly related to the fiber extension λf (I4 = λ2

f ).

To incorporate the active contraction, an active fiber stress T (0) was applied in the deformed fiber direction fC .
Hence the Cauchy stress tensor in state C (noted τC) is given by

τ C = −pCI + ΦPC

∂W (EPC , t)

∂EPC

ΦT
PC + β(t) T (0)fC ⊗ fC (5)

where pC is the Lagrangian multiplier resulting of the incompressibility of the material, equivalent to an
internal pressure, and the symbol ⊗ denotes the tensor product.

Variational formulation- The undeformed body state P contains a volume V bounded by a closed surface
A, and the deformed body state is, as before, noted C. The corresponding position vectors, in cartesian
base unit vectors, are R = Y ReR and r = yrer , respectively. However, we write the equations with suitable
curvilinear systems of world coordinates noted ΘA in the reference configuration (state P) and θα in the deformed
configuration (state C). In this paper we use the following conventional notations: (i) capital letters are used for
coordinates and indices of tensor components associated to state P, and lower case letters are related to state
C, and (ii) G and g are the base vectors in states P and C, respectively, for which parenthetical superscript

indicates the associated coordinate system (for example G
(x)
I = ∂R/∂XI = R

(x)
,I and g

(x)
i = ∂r/∂xi = r

(x)
,i ).

The Lagrangian formulation of the virtual works principle is given by

∫

V

P IJΦ·αJ ∇I(δuα) dV =

∫

V

ρ(bα − γα)δuα dV +

∫

A2

s.δu dA (6)

where P IJ are the components of the second Piola-Kirchhoff stress tensor P = Φ−1
PC . τC . (Φ−1

PC)T referred to the

base tensor G
(x)
I ⊗G

(x)
J , Φ·αI = ∂θα/∂XI are the components of the gradient tensor ΦPC in the base tensor g

(θ)
α ⊗

G(x)I , δu = δuαg(θ)α is an arbitrary admissible displacement vector, ∇I (δuα) =

∂δuα/∂XI − g
(θ)
α,I · g

(θ)βδuβ are the components of the covariant differentiation vector δu in the base vec-

tors g(θ)α (i.e. ∇I (δu) = ∇I (δuα)g(θ)α). The previous differentiation is done with respect to the locally
orthonormal body coordinates ( XI , I = 1, 2, 3) which coincide with the local muscle fiber direction in state P .

The material density in the undeformed body state P is ρ, b = bαg
(θ)
α is the body force vector per unit mass,

γ = γαg
(θ)
α is the acceleration vector, s is the surface traction per unit area of A, and A2 is the part of A not

subject to displacement boundary conditions. The Lagrangian formulation for incompressibility is given by

∫

V

(

det g
(x)
IJ − 1

)

q dV = 0 (7)

where g
(x)
IJ is the metric tensor and q is an arbitrary admissible pressure. Eqs.(6)-(7) represent the variational

formulation of a system of nonlinear partial differential equations.
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2. Preliminary results

We use a three dimensional finite element with Lagrange trilinear interpolation for the displacements and
uniform pressure [7] to compute an approximate solution of Eqs.(6)-(7) on a rectanguler or cylindrical mesh,
where we neglect the acceleration and body forces (b = 0, γ = 0). At this time we compared the exact
solution to the numerical one obtained for the cases of a free contraction, uniaxial and equibiaxial extension of
a rectangular mesh. These comparisons show an error less than 10−12 in the L2 norm. Figure 2 shows a good
agreement between our proposed constitutive law and the experimental data for an equibiaxial test of a thin
myocardial sample. Other simulations (not presented here) were done for an artery under physiological loading
conditions, in which the fibers are uniformly oriented in orthoradial direction.
This numerical tool may be adapted for large scale problems such as modeling normal or pathological heart or
artery.
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Figure 2. Equibiaxial tests: comparison with experimental data in passive case (β = 0, curve
a) and in active cases (β = 1) in the fiber direction (curve c) and the cross-fiber direction (curve
b). Solid lines represent the computed FE solutions, symbols represent the experimental data [6]
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