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Abstract

Recent studies in mammalian hearts show that left ventricular wall thickening is
an important mechanism for systolic ejection and that during contraction the cardiac
muscle develops significant stresses in the muscular cross-fiber direction. We suggested
that the collagen network surrounding the muscular fibers could account for these
mechanical behaviors. To test this hypothesis we develop a finite element model for
large deformation response of active, incompressible, nonlinear elastic and transversely
isotropic cardiac tissue in which we include a coupling effect between the connective
tissue and the muscular fibers. Then, the three-dimensional finite element formula-
tion including this internal pseudo-active kinematic constraint is written and applied
to obtain solutions to an active contraction, uniaxial and equibiaxial extensions of a
rectangular sample assuming negligible body forces and inertia. This model could ex-
plain the effect of the extracellular collagen network on the myocardial contraction,
and the results obtained shown that the proposed connective tissue organization may
contribute to the systolic wall thickening.

1 Introduction

Indirect evidence indicates that the characteristics of the passive extracellular connective
tissue in the cardiac muscle (myocardium) is an important determinant of ventricular func-
tion [16, 14]. Transverse shear along myocardial cleavage planes provides a mechanism for
a normal systolic wall thickening. An appropriate constitutive law for myocardium should
therefore incorporate the most important features of its microstructure. A sound theoretical
formulation for material laws of active myocardium is essential for an accurate mechanical
analysis of the stresses in the ventricular wall during the whole cardiac cycle. The wall stress
distribution is one of the main factors governing the myocardial energetic ([24]), the coronary
blood flow ([15, 5], the cardiac hypertrophy ([1, 9]) and the fetal heart growth ([27, 19]).
To date we do not have any reliable technique to evaluate the stress in the cardiac muscle,
therefore, mechanical models are useful in cardiology to assess the functional capacities of
the human heart. Several numerical models using a finite element (FE) analysis have been
done to simulate the left ventricle at end-diastolic state ([11, 12, 13, 10, 6, 7]), and dur-
ing active myocardial contraction ([3, 12, 17]). Up to now, the mechanical behavior of the
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connective tissue is assumed isotropic. However, this last assumption is not in agreement
with some recent experimental works done on a sample of active myocardial rabbit tissue in
which the orientation of the muscle fibers was approximately uniform. Lin and Yin ([16])
shown that, during an active equibiaxial stretch test, there are significant stresses developed
in the cross-fiber direction (more than 40% of those in the fiber direction) that cannot be
attributed to nonparallel muscle fibers.
Therefore, the purposes of this paper are to: (i) suggest a realistic pseudo-active kinematic
law coupling the passive connective tissue to the muscle fibers, which may explain a part of
the developed tension in the cross-fiber direction observed by Lin and Yin ([16]), (ii) formu-
late an active three-dimensional material law for a nonlinear hyperelastic and incompressible
continuum medium, which takes care of these coupling effects, (iii) derive the related hree-
dimensional finite element (FE), and (iv) test the accuracy and convergence of the proposed
numerical methods.

2 Microstructure of the cardiac tissue

2.1 Muscle fiber organization

Anatomical observations have shown that the cardiac muscle tissue has a highly specialized
architecture [25]. This structure is composed primarily of cardiac muscle cells, or myocytes
that are 80 to 100 µm in length and are roughly cylindrical with cross-sectional dimensions
of 10 to 20 µm. These cells are arranged in a more or less parallel weave that we idealize as
“muscle fibers”. We shall denote the local direction of this group of cells by the unit vector f

and refer to it also as the local “fiber” direction with the understanding that individual con-
tinuous muscle fibers do not really exist. Experimental measurements have shown that the
muscle fiber direction field defines paths on a nested family or toroidal surfaces of revolution
in the wall of the heart [25]. These results show a continuously changing orientation f of
the muscle fibers through the wall, circumferential near the midwall and progressively more
inclined with respect to the equatorial plane when moving toward either the epicardium or
the endocardium.

2.2 The cardiac connective tissue organization

Myocytes and coronary blood vessels are embedded in a complex extracellular matrix which
consists of collagen and elastin, mainly. Caulfield and Borg [4] first used the scanning
electron microscope (SEM) to reveal the basic organization of this connective tissue network.
Other studies on the connective tissue of mammalian heart muscle give the description
of the extracellular structures and their arrangement relative to cardiac muscle cells [4,
22, 23] . They described the three following classes of connective tissue organization: (i)
interconnections between myocytes, (ii) connections between myocytes and capillaries and,
(iii) a collagen weave surrounding group of myocytes. When viewed by SEM, groups of
myocytes can be seen to be encompassed by a rather prominent meshwork of fibrillard
collagen, and short collagen struts (similar to those that attach adjacent myocytes to each
other) attach the myocytes subjacent to this meshwork to it.
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3 The mechanical model and its finite element formulation

3.1 Mechanical coupling between muscle fibers and connective tissue

Extrapolations from the muscle fiber arrangement to the myocardial stress are realistic when
also taking account the effect of the connective tissue. We believe that a part of that connec-
tive tissue, surrounding group of myocytes, is responsible for the active tension developed
in the perpendicular direction of the muscle fibers running on the tangential plane of the
ventricular wall. Based on the previous SEM observations, we propose a connective tissue
organization illustrated on figure 2. We assume that the myocytes are roughly cylindrical
and that groups of myocytes are surrounded by inextensible collagen networks. So, during
the contraction, the myocytes diameter increases and because the collagen network is inex-
tensible, the adjacent muscle cells become closer. Thus the pseudo-active kinematic relation
between the muscle fiber and cross-fiber extension ratios (noted λf and λcf , respectively) is
h(λf , λcf) = 0 with:

h(λf , λcf) = 1 − λcf + (π − 2)(1 − λ
−1/2
f )

a

D
(1)

with D = 4a+ d where a is the initial myocyte radius and d is the distance between the two
cells (Fig. 2).

3.2 Constitutive law for the active cardiac tissue under internal pseudo-active

kinematic constraint

To be consistent with our mathematical formulation, the letter Φ is used for the non elastic
gradient tensor and the letter F is used for the elastic gradient tensor. The activation of
the muscle fibers changes the properties of the material and at the same time contracts the
muscle itself. To have a continuous elastic description during the activation of the tissue,
we used an approach similar to the one proposed by Ohayon and Chadwick [20], Taber [26],
Lin and Yin [16]. From its passive zero-stress state P , the free activation of the muscle
fibers is modelised by the following two transformations (Fig.1): the first one (from state
P to virtual state A0) changes the material properties without changing the geometry, and
the second one (from A0 to A) contracts the muscle without changing the properties of the
material. Thus, the former is not an elastic deformation and is described by the gradient
tensor ΦPA0

= I where I is the identity matrix. In that first transformation, only the strain
energy function is modified using an activation function β(t), where t is the cardiac cycle
time. The second transformation is an elastic deformation caused only by the active tension
delivered by the fibers and takes care of the internal kinematic constraint (Eq.(1)). This
last transformation is described by the gradient tensor FA0A. Thus the transformation from
state P to state A is a non elastic transformation (ΦPA = ΦPA0

FA0A), but can be treated
mathematically as an elastic one because ΦPA = FA0A. Finally, external loads are applied to
state A deforming the body through into C (Fig.1). The change of the material properties
of the myocardium during the cardiac cycle is described by a time-dependent strain-energy
function per unit volume of state P noted W (EPH, t):

W (EPH) = −
1

2
pH(I3(EPH) − 1) +W ∗(EPH) + δAH Wpseudo

active
(EPH) (2)

with

W ∗(EPH) = Wpas(EPH) + β(t)W f
act(EPH) (3)
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where EPH is the Green’s strain tensor at an arbitrary state H calculated from the zero
strain state P (the state H could be one of the states A0, A or C shown in figure 1),
pH is the Lagrangian multiplier resulting of the incompressibility constraint detΦPH = 1,
I3(EPH) is the determinant of the right Cauchy-Green strain tensor CPH (CPH = 2EPH +I),
Wpas represents the contribution of the surrounding collagen matrix and of the passive fiber

components, W f
act arises from the active component of the embedded muscle fibers, and β(t)

is an activation function equal to zero at end-diastolic state and equal to one at end-systolic
state (0 ≤ β(t) ≤ 1). The scalar δAH is equal to one if state H is the state A and zero
if the two states H and A are distinct. The term W f

act(EPH) gives the variation of the
muscle fibers properties during the cardiac cycle. The pseudo-active strain energy function
expressed in the last term of the right hand side of the Eq.(2) is introduced in order to satisfy
the kinematic condition (Eq.(1)) and is given by:

Wpseudo

active
(EPH) = −

1

2
qH h(EPH) (4)

The scalar qH introduced in Eq.(4) serves as an additional indeterminate Lagrange multi-
plier which contributes to the pseudo-active stresses at state H in fiber and the cross-fiber
directions, and h(EPH) is the function defined in Eq.(1), which may be rewritten as:

h(EPH) = 1 − I
1/2
6 + (π − 2) (1 − I

−1/4
4 )

a

D
(5)

where I4 and I6 are two strain invariants given by I4(EPH) = fP · CPH · fP and I6(EPH) =
f⊥P · CPH · f⊥P in which the fiber and the perpendicular fiber directions are respectively
characterized in state P by the unit vectors fP and f⊥P . In an arbitrary deformed state H ,
the direction of these two unit vectors are noted fH and f ′H and are respectively defined by
fH = ΦPH · fP/ ‖ ΦPH · fP ‖ and f ′H = ΦPH · f⊥P / ‖ ΦPH · f⊥P ‖. The tensor CPH is the
right Cauchy-Green strain tensor (CPH = 2EPH + I = ΦT

PHΦPH ). The superscript ‘T ’ is
used for transpose matrix and ‖ · ‖ stands for the euclidian norm. Note that I4 and I6 are
directly related respectively to the fiber and cross-fiber extension ratios (we have I4 = λ2

f and
I6 = λ2

cf). In our notations λf is related to the fiber direction fH and λcf to the cross-fiber
direction f ′H (Figure 2). We treat the myocardium as a homogeneous, incompressible, and
hyperelastic material transversely isotropic with respect to the local muscle fiber direction.
In this study, we modified the strain-energy function suggested by Lin and Yin [16] by
substracting the beating term and introducing an activation function β(t) which allows to
describe continuously the phases of the cardiac cycle:

Wpas(EPH) = Cp
1 (eQ − 1) (6)

with Q = Cp
2 (I1 − 3)2 + Cp

3 (I1 − 3)(I4 − 1) + Cp
4(I4 − 1)2 (7)

and W f
act(EPH) = Ca

1 (I1 − 3)(I4 − 1) + Ca
2 (I1 − 3)2 + Ca

3 (I4 − 1)2 + Ca
4 (I1 − 3) (8)

where (Cp
i , i = 1, · · · , 4) and (Ca

i , i = 1, · · ·4) are material constants and I1 is the first
principal strain invariant given by I1(EPH) = trCPH .
To incorporate the active contraction, an active fiber stress β T (0) was applied in the deformed
fiber direction. In our approach, the active loaded state C of the myocardial tissue is obtained
in two steps. In the first step and at a given degree of activation β, we derived and quantified
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the internal pseudo-active stresses by looking the free contraction configuration of the tissue
(state A, Figure 1). Then, in a second step, we applied the loads on the active myocardial
tissue under the internal pseudo-active stresses previously found.

Determination of the free contraction state A- During the cardiac cycle and at a
given degree of activation β, the Cauchy stress tensor in state A (noted τ A) is given by:

τA = −pAI + ΦPA
∂W ∗ (EPA)

∂EPA
ΦT

PA + β(t)T (0)fA ⊗ fA + τ
pseudo

active
A (9)

with τ
pseudo

active
A = ΦPA

∂Wpseudo

active
(EPA)

∂EPA
ΦT

PA (10)

where the symbol ⊗ denotes the tensor product. The postulated mechanical coupling law

(Eq.(5)) induces, during the contraction, a pseudo-active stress tensor (noted τ
pseudo

active
A ) with

stress components in the fiber and cross-fiber direction:

τ
pseudo

active
A = T f

A fA ⊗ fA + T cf
A f ′A ⊗ f ′A (11)

These two stress tensor components T f
A and T cf

A are activation-dependent and behave as some
internal tensions in the fiber and cross-fiber directions of unit vectors fA and f ′A, respectively.
These pseudo-active tensions are defined by:

T f
A = 2

∂Wpseudo

active
(EPA)

∂I4 (EPA)
‖ ΦPA · fP ‖2 and T cf

A = 2
∂Wpseudo

active
(EPA)

∂I6 (EPA)
‖ ΦPA · f⊥P ‖2 (12)

Determination of the physiological active loaded state C- As we have modelised the
active fiber tension β(t)T (0), we incorporate these previously found internal pseudo-active
tensions T f

A and T cf
A in the expression of the stress tensor at loaded state C. Therefore, at a

given time (or activation β) of the cardiac cycle, the Cauchy stress tensor in the physiological
state C (noted τ C) is written as:

τC = −pCI + ΦPC
∂W ∗ (EPC)

∂EPC
ΦT

PC +
(

β(t)T (0) + T f
A

)

fC ⊗ fC + T cf
A f ′C ⊗ f ′C (13)

The suggested constitutive law for the active myocardium (Eqs.(2)-(13)) makes it possible
to simulate the left ventricle behavior during the whole cardiac cycle. Thus, in this law: (i)
the anisotropic behavior is incorporated in the expression of the passive, active and pseudo-
active strain energy functions by the terms I4 and I6, (ii) the contraction is accounted for
by an active stress β T (0) in the fiber direction, (iii) the change of properties is expressed
by the active strain energy term β(t)W f

act, and (iv) the coupling effect between the collagen
network and the muscular fibers is accounted for by the two internal pseudo-active tensions
T f

A and T cf
A in the fiber and cross fiber directions fC and f ′C , respectively.

3.3 Variational formulation

The undeformed body state P contains a volume V bounded by a closed surface A, and the
arbitrary deformed body state is, as before, noted H . The corresponding position vectors,
in cartesian base unit vectors, are R = Y ReR and r = yrer , respectively. However, we
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write the equations with suitable curvilinear systems of world coordinates noted ΘA in the
reference configuration (state P ) and θα in the deformed configuration (state H): see Figure
3. In this paper we use the following conventional notations: (i) capital letters are used for
coordinates and indices of tensor components associated to state P, and lower case letters
are related to state C, and (ii) G and g are the base vectors in states P and C, respectively,
for which parenthetical superscript indicates the associated coordinate system (see table 1,

for example G
(x)
I = ∂R/∂XI = R

(x)
,I and g

(x)
i = ∂r/∂xi = r

(x)
,i ).

The Lagrangian formulation of the virtual works principle is given by

∫

V

P IJ
H Φ·α

J ∇I(δuα) dV =

∫

V

ρ(bα − γα)δuα dV + (1 − δAH)

∫

A2

s.δu dA (14)

where P IJ
H are the components of the second Piola-Kirchhoff stress tensor at state H , defined

by PH = Φ−1
PH . τH . (Φ

−1
PH)T , referred to the base tensor G

(x)
I ⊗ G

(x)
J , Φ·α

I = ∂θα/∂XI are

the components of the gradient tensor ΦPH in the base tensor g
(θ)
α ⊗ G(x)I , δu = δuαg

(θ)α

is an arbitrary admissible displacement vector, ∇I(δuα) = ∂δuα/∂X
I − g

(θ)
α,I · g

(θ)βδuβ are

the components of the covariant differentiation vector δu in the base vectors g(θ)α (i.e.
∇I(δu) = ∇I(δuα)g(θ)α). The previous differentiation is done with respect to the locally
orthonormal body coordinates (XI , I = 1, 2, 3) which coincide with the local muscle fiber

direction in state P . The material density in the undeformed body state P is ρ, b = bαg
(θ)
α

is the body force vector per unit mass, γ = γαg
(θ)
α is the acceleration vector, s is the surface

traction per unit area of A, and A2 is the part of A not subject to displacement boundary
conditions.
The Lagrangian formulation for incompressibility is givenby

∫

V

(

det g
(x)
IJ − 1

)

p∗ dV = 0 (15)

where the metric tensor g
(x)
IJ is the metric tensor and p∗ is an arbitrary admissible pressure.

Lastly the Lagrangian formulation for the additional pseudo-active kinematic constraint is
given by

δAH

∫

V

h(I4, I6) q
∗ dV = 0 (16)

for all admissible q∗. Eqs.(14)-(15) -(16) represent the variational formulation of a system of
nonlinear partial differential equations.

3.4 Finite element approximation

Through this paper we use a three dimensional finite element with Lagrange trilinear interpo-
lation for the displacements and uniform Lagrangian multipliers to compute an approximate
solution of Eqs.(14)-(15)-(16)) on a rectangular mesh, where we neglect the acceleration and
body forces (b = 0, γ = 0). This element is commonly used and is relevant for the finite el-
ement approximation of this type of problem where kinematics constraints must be satisfied
[8].
Let (ξK) the Lagrangian normalized finite element coordinates (Figure 3), the deformed
geometric coordinates θα in element e are interpolated as
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θα =
8

∑

n(e)=1

ψn(e)(ξ1, ξ2, ξ3) θ
α
n(e) (17)

where ψn(e) is the base function associated with the local node n(e) and θα
n(e) is the α-

coordinate of the local node n of element e.

Let Ω
n(e)
∆ be the connectivity matrix defined by

Ω
n(e)
∆ =

{

1 if ∆(n(e), e) = ∆
0 otherwise

(18)

where ∆(p, e) is the global node corresponding with the local node p of the element e. Since
we use one single cartesian coordinate system ((ΘA) = (XI) = (Y R) and (θα) = (xi) = (yr)),
we denote the nodal displacements θα

∆ by yα
∆. Then the FE approximation of Eqs.(14)-(15)-

(16) is

∑

e

8
∑

n(e)=1

Ω
n(e)
∆

∫

Ve

P IJ
H Φ·α

J ∇I(ψn(e)) dV = (1 − δAH)
∑

e

8
∑

n(e)=1

Ω
n(e)
∆

∫

A2e

sα ψn(e) dA(19)

∫

Ve

(

det g
(x)
IJ − 1

)

dV = 0 (20)

δAH

∫

Ve

h(I4, I6) dV = 0 (21)

with ∆ = 1, · · · ,∆max, α = 1, 2, 3, where A2e
is the part of Ae (boundary of element e) non

subject to displacement conditions.

3.5 Finite element solution method

We proceed in two steps. The first one consists in the determination of the pseudo- active
stresses T f

A and T cf
A as functions of the activation parameter β ∈ [0, 1] by looking for the

state A (δAH = 1). We solve the system (19)-(20)-(21) with zero right hand side for (19)
(free active contraction) and P IJ

A given by

P IJ
A = −pA g

(x)IJ + 2G(x)IJ W ∗

1 + (2W ∗

4 − qA h4) δ
1Iδ1J

+β(t)T (0) δ1Iδ1J

‖ g
(x)
1 ‖2

− qA h6 δ
2Iδ2J (22)

where W ∗

i =
∂W ∗

∂Ii
=
∂Wpas

∂Ii
+ βW (t)

∂W f
act

∂Ii
+ δAH

∂Wpseudo

active

∂Ii
i = 1, 4 (23)

and hi =
∂h(I4, I6)

∂Ii
i = 4, 6 (24)

The unknowns of this nonlinear system of equations are (yα
∆, pA(e), qA(e)) with α = 1, 2, 3,

∆ = 1, · · · ,∆max and e = 1, . . . , emax where emax is the total number of elements involved
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in the mesh. We derive T f
A and T cf

A for a given β according to Eq.(12). Then in a next step
we can compute any physiological active loaded state C solving the system (19)-(20) with
δAH = 0 and P IJ

C given by

P IJ
C = −pC g

(x)IJ + 2G(x)IJ W ∗

1 + 2W ∗

4 δ
1Iδ1J

+(β(t)T (0) + T f
A)

δ1Iδ1J

‖ g
(x)
1 ‖2

+ T cf
A

δ2Iδ2J

‖ g
(x)
2 ‖2

(25)

To solve the sytem in both cases we use the Powell method [21]. This method is a quasi
Newton method which consists in: (i) computing the jacobian matrix of an iterate by forward
differences (with step h=10−8) and (ii) searching the new iterate on a steepest descent line
of the jacobian by the so called “dogleg method” [28]. For this sake, we use the package
minpack [18]. Moreover, one can observe that in equation (19)-(20), the nonlinear functions
involve 3D and 2D integrals over a rectangular domain. Thus we use adaptive gaussian
quadrature method to evaluate with a very good precision (up to 10−12) these integrals.
For this purpose, we use the package dcuhre [2]. Our numerical code named samuel (for
“Solid Active MUscle ELement”) is implemented in Fortran 77 on Personal Computers under
LinuX operating system.

4 Results

We simulated the loading of a thin sample of myocardium (1.0 × 1.0 × 0.1 cm3) in which
the fibers are uniformly oriented in one direction (Y1). We compared the exact solution
to the numerical one obtained for the cases of a free contraction, uniaxial and equibiaxial
extension of a rectangular mesh. These comparisons show an error less than 10−12 in the
L2 norm. In the case of a free active contraction (Fig.4) we observe an important effect of
the kinematic constraint in the cross-fiber directions cf and cf’: contraction in the direction
cf and a thickening effect in the direction cf’. The effect of the pseudo- active stresses T f

A

and T cf
A can be observed in the cases of active or passive uniaxial (Fig.5) and equibiaxial

(Fig.6) extension tests. We show in tables 2 and 3 the effect of the geometric parameters a,
d (see Fig.2) and of the maximal active tension T (0) on the internal pseudo-active tensions
T f

A, T cf
A and on the ratio between the cross fiber (cf) Cauchy stress σ22 and the fiber (f)

Cauchy stress σ11.
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5 Figures
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Figure 1: Description of the active rheology approach (see text for more details).
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Figure 2: Schematic illustration of the internal pseudo-active kinematic constraint induced
by the collagen network surrounding the myocytes. A) Before contraction. B) After or
during contraction.
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Figure 3: Coordinate systems (adapted from Costa et al. [6, 7]).

State Indices Coord.
Covariant Contravariant

Metric tensors
base vectors base vectors

P R,S Y R eR eR δRS δRS
(I)

H r, s yr er er δrs δrs

P A,B ΘA G
(θ)
A =

∂R

∂ΘA
G(θ)A G

(θ)
AB G(θ)AB

(II)

H α, β θα g(θ)
α =

∂r

∂θα
g(θ)α g

(θ)
αβ g(θ)αβ

(III) P K,L ξK G
(ξ)
K =

∂R

∂ξK
G(ξ)K G

(ξ)
KL G(ξ)KL

P I, J XI G
(x)
I =

∂R

∂XI
G(x)I G

(x)
IJ = δIJ G(x)IJ = δIJ

H g
(x)
I =

∂r

∂XI
g(x)I g

(x)
IJ g(x)IJ

P i, j, k, l xi G
(x)
i =

∂R

∂xi
G(x)i G

(x)
ij G(x)ij

(IV)

H g
(x)
i =

∂r

∂xi
g(x)i g

(x)
ij = δij g(x)ij = δij

Table 1: Notations for the coordinate systems used to formulate finite element method
(adapted from Costa et al. [6, 7]). (I) Rectangular cartesian reference coordinates, (II)
Curvilinear world coordinates, (III) Normalized finite element coordinate, (IV) Locally or-
thonormal body/fiber coordinates. H stands for A or C
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a/d
X

X
X

X
X

X
X

X
X

X
X

XX

T0 (KPa)
5 15 25 35 45

T f
A/T0 (%) -1.98 -3.11 -3.66 -3.97 -4.15

0.10

T cf
A /T0 (%) 32.23 47.42 53.82 57.13 59.01

T f
A/T0 (%) -3.03 -4.72 -5.52 -5.98 -6.63

0.15

T cf
A /T0 (%) 32.91 47.73 53.90 57.11 58.92

T f
A/T0 (%) -4.13 -6.34 -7.39 -8.00 -8.36

0.20

T cf
A /T0 (%) 33.50 47.91 53.85 56.93 58.69

Table 2: Free contraction at β = 1. Effect of the geometric parameters a, d (see Fig.2) and
of the maximal active tension T (0) on the internal pseudo-active tensions T f

A and T cf
A

a/d
X

X
X

X
X

X
X

X
X

X
X

X
XX

T0 (KPa)
5 15 25 35 45

σ22/σ11 (%) 50.92 53.73 57.65 60.25 61.90
0.10

σ22 (KPa) 5.94 11.44 17.78 24.32 30.88

σ22/σ11 (%) 51.44 54.56 58.60 61.30 63.01
0.15

σ22 (KPa) 5.97 11.48 17.80 24.31 30.84

σ22/σ11 (%) 51.94 55.33 59.47 62.25 64.04
0.20

σ22 (KPa) 6.00 11.51 17.79 24.25 30.73

σ22/σ11 (%) 36.78 19.88 13.62 10.36 8.36
No kinematic constraint

σ22 (KPa) 4.32 4.32 4.32 4.32 4.32

Table 3: Equibiaxial active loading at λ1 = λ2 = 1.2. Effect of the geometric parameters
a, d (see Fig.2) and of the maximal active tension T (0) on the ratio between the cross fiber
Cauchy stress σ22 and the fiber Cauchy stress σ11


