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Université de Savoie, LAMA, GM3

73376 Le Bourget-du-Lac Cedex, France.
bourdarias@univ-savoie.fr, gerbi@univ-savoie.fr

ABSTRACT. We present a model for compressible flows in a deformable pipe which is

an alternative to the Allievi equations. The numerical simulation is performed using

a first order linearly implicit scheme. In the case of waterhammer we compare the

numerical results with those of an extension to second order implicit scheme
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1. Introduction

The commonly used model to describe flows in pipe-lines is the Allievi equa-
tions. These equations are usually solved with the characteristics method. The
resulting system of 1st order partial differential equations cannot be written
under a conservative form since this model is derived by neglecting some ac-
celeration terms. In this paper, we derive a model from 3D compressible Euler
equations by integration over sections orthogonal to the flow direction and by

using a linearized pressure law p =
ρ− ρ0

βρ0
in which ρ represents the density of

the liquid, ρ0, the density at atmospheric pressure and β the water compress-
ibility ratio. This model writes:

∂U

∂t
+

∂F (U)
∂x

= G(x,U) [1]

where U =
(

ρA
ρQ

)
=

(
M
D

)
, F (U) =




D
D2

M
+ c2 M


 and

G(x,U) =




0

gM sin θ − g K(δ)
D|D|
M

+
c2 M

A

∂S

∂x


 .



2 Finite volumes for complex applications

A = A(x, t) is the surface area of a section normal to the pipe axis at
position x, Q = Au is the flow of the liquid (with the average velocity u), g
is the gravity acceleration, θ is the slope of the pipe at position x and c the
sound speed. K(δ) is a positive factor depending on the diameter δ of the pipe.
We use a linear elastic law for the deformation of the section, derived from the
Hooke’s law for an elastic material. Setting A(x, t) = S(x, p(x, t)), for a pipe
with a circular cross section this law is, [STR 98]:

∂S

∂p
=

Sδ

eE
[2]

where e is the wall thickness and E the Young’s modulus of elasticity for the
wall material. Then the sound speed is approximated by

c =

√
1

ρ0

(
β + δ

eE

) [3]

instead of
√

1
ρ0β

in the undeformable case. The time evolution equation for A

deduced from [2] writes
∂A

∂t
= λ

∂M

∂t
[4]

with λ =

δ

eE
β ρ0 + ρ δ

e E

' δ

e E
c2. It is coupled with equation [1]. Since the

eigenvalues of the jacobian matrix dF (U) have very large magnitude (of order
103ms−1), we choose, following [GAL 96, EYM 00], to discretise this system of
1st order conservative partial differential equations by a linearly implicit finite
volume scheme to avoid the usual CFL condition for an explicit 1st order spatial
discretization. The main difficulty comes from the boundary condition treat-
ment. We propose an adaptation of a classical method ([DUB 01, KUM 93]
for instance) to the implicit case.

2. Model

This model is derived from 3D system of compressible Euler equations by
integration over sections orthogonal to the flow axis . The equation for con-
servation of mass and the first equation for the conservation of momentum
are

∂ρ

∂t
+ div(ρ ~U) = 0 [5]

∂(ρ u)
∂t

+ div(ρ u ~U) = Fx − ∂P

∂x
[6]
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with the speed vector ~U = u~i + v~j + w~k = u~i + ~V . We use the linearized

pressure law P = Pa +
1
β

(
ρ

ρ0
− 1

)
, exterior strengths are the gravity ~g and

the friction −Sf
~i. Then equations [5]-[6] become

∂tρ + ∂x(ρ u) + div(y,z)(ρ ~V) = 0 [7]

∂t(ρ u) + ∂x(ρ u2) + div(y,z)(ρ u ~V) = ρg(sin θ − Sf )− ∂xρ

βρ0
[8]

Equations [7]-[8] are integrated over a cross section Ω(x, t). In the following,
overlined letters represent averaged quantities over Ω(x, t). For the first equa-
tion we have successively, with the approximation ρ̄u ' ρ̄ ū :

∫

Ω(x,t)

∂tρ = ∂t

∫

Ω(x,t)

ρ−
∫

∂Ω(x,t)

ρ
∂ ~M

∂t
· ~n

∫

Ω(x,t)

∂x(ρu) = ∂x(ρ̄ ūA)−
∫

∂Ω(x,t)

ρu
∂ ~M

∂x
· ~n

∫

Ω(x,t)

div(y,z)(ρ~V) =
∫

∂Ω(x,t)

ρ~V · ~n

The water proof condition writes

(
∂ ~M

∂t
+ u

∂ ~M

∂x
− ~V

)
·~n = 0, then we get the

following equation for the conservation of the mass :

∂t(ρ̄A) + ∂x(ρ̄Q) = 0 [9]

where we have set Q = A ū. Next, with the approximations ρ̄u ' ρ̄ ū and
¯ρu2 ' ρ̄ ū2, the same procedure applied to the momentum equation [8] leads to

∂t(ρ̄Q) + ∂x

(
ρ̄
Q2

A
+

ρ̄

βρ0
A

)
= gρ̄A(sin θ − Sf ) +

ρ̄

βρ0

∂A

∂x
[10]

From [2] we get
∂A

∂x
=

∂S

∂x
+

δ

eE
A

∂p

∂x
=

∂S

∂x
+

δ

eE

A

βρ0

∂ρ

∂x
. Joined to [10],

with Sf given by the Manning-Strickler law (see [STR 98]), this gives [1]-[3].
∂S

∂x
is related to the geometry of the pipe. For the numerical approximation

of [1]- [4] we use a finite volume method with Roe’s numerical flux in a partial
linearly implicit version. We present here the implicit first order scheme. A
spatial second order extension will be presented in a forthcoming paper.



4 Finite volumes for complex applications

3. The finite volume discretisation and its implicit formulation

The main axis of the pipe, with length L, is divided in N meshes mi =
[xi−1/2, xi+1/2], 1 ≤ i ≤ N such that x 1

2
= 0 and xN+ 1

2
= L. We denote xi

the center of mi and hi its length. ∆t denotes the timestep. We set t0 = 0 and

for n ≥ 0, tn+1 = tn + ∆t. The discrete unknowns are Un
i =

(
Mn

i

Dn
i

)
1 ≤

i ≤ N, 0 ≤ n ≤ nmax. The upstream and downstream boundary states Un
0 ,

Un
N+1 are associated to fictive meshes denoted 0 et N + 1. Let M ∈ Mn(IR)

be a diagonalizable real matrix with real eigenvalues λ1, · · ·λn associated to
eigenvectors r1, · · · , rn: diag(λi) = P−1 M P . We set |M | = P diag(|λi|) P−1.

3.1. Principle of explicit first order Roe scheme

In this section we recall the principle of the explicit first order Roe scheme
applied to the system [1]- [2] without taking any boundary data into account.
Roe’s scheme, derived from Godunov’s method, is based on the use of an ap-
proximate Riemann solver (see [EYM 00] for instance). It takes the conserva-
tive form

hi
Un+1

i − Un
i

∆t
+ Fn

i+1/2 − Fn
i−1/2 = hi Gn

i i ∈ ZZ , n ≥ 0 [11]

where for all i ∈ ZZ , U0
i is the averaged value of U0 on mesh i. The numerical

flux Fn
i+1/2, in its centered form, is given by

Φ(Ug, Ud) =
F (Ug) + F (Ud)

2
+

1
2
|A(Ug, Ud)| · (Ug − Ud) [12]

The timestep (at time tn) in the resulting scheme is classically subject to a
“Courant-Friedrich-Lévy type” condition:

(CFL) ∆t = C
infi∈ZZ hi

max {
∣∣∣λtnk,i+1/2

∣∣∣ ; 1 ≤ k ≤ 2, i ∈ ZZ }
C ∈]0, 1[

Following Roe’s method ([ROE 81] in the case of unidimensional Euler equa-
tions) we get, at least in the case of a rigid pipe, the following Roe matrix

A(Ug, Ud) =
(

0 1
c2 − ũ2 2ũ

)
[13]

with

ũ =
ug

√
Mg + ud

√
Md√

Mg +
√

Md

c =
√

1
βρ0

.

In the deformable case we use [13] with a suitable averaged sound speed (based
on [3]) ensuring the consistency of [12]. The resulting matrix is no longer a
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Roe matrix but the conservativity is naturally ensured by the Finite Volume
scheme [11]. Practically, with β = 5.10−10 m3/N the (CFL) condition gives
∆t ≤ 0.7 10−3 ∆x. This very severe restriction motivates the construction of
an implicit scheme.

3.2. First order implicit Roe scheme

A fully implicit scheme based on the previous approach would write

hi
Un+1

i − Un
i

∆t
+ Fn+1

i+1/2 − Fn+1
i−1/2 = hi Gn+1

i

with

Fn+1
i+1/2 =

F (Un+1
i ) + F (Un+1

i+1 )
2

+
1
2
|A(Un+1

i , Un+1
i+1 )| · (Un+1

i − Un+1
i+1 )

Gn+1
i = G(xi, U

n+1
i ).

It would obviously be of high cost and not easily extended to second order.
The current approach, following [GAL 96], consists in linearizing F (Un+1

i )
and G(xi, U

n+1
i ) around Un

i and using the explicit matrix A(Un
i , Un

i+1) rather
than A(Un+1

i , Un+1
i+1 ). Then we get

hi
Un+1

i − Un
i

∆t
+ F̃n+1

i+1/2 − F̃n+1
i−1/2 = hi G̃n+1

i [14]

In this scheme the numerical flux is given by

F̃n+1
i+1/2 =

1
2

(
dF (Un

i ) · Un+1
i + dF (Un

i+1) · Un+1
i+1 )

)

+
1
2
|A(Un

i , Un
i+1)| · (Un+1

i − Un+1
i+1 ) [15]

The non- zero component of the right hand side is

(
G̃n+1

i

)
2

= gMn+1
i sin θi − 2g Ki

|Dn
i |Dn+1

i

Mn
i

+ g Ki
|Dn

i |Dn
i

(Mn
i )2

Mn+1
i

+
Mn+1

i

βρ0Ai

(
∂S

∂x

)

i

[16]

From a mathematical point of view, we must give as much scalar boundary
conditions as incoming characteristic curves, that is one at each end of the
pipe, thus Un+1

0 and Un+1
N+1 are not completely specified and a special boundary

conditions treatment is performed.



6 Finite volumes for complex applications

3.3. Boundary conditions

In order to achieve the description of the implicit scheme, we precise now a
way to take the boundary conditions into account. We recall that the upstream
and downstream state vectors (corresponding to x1/2 and xN+1/2) at time tn

are respectively denoted Un
0 =

(
Mn

0

Dn
0

)
et Un

N+1 =
(

Mn
N+1

Dn
N+1

)
. The

method that we describe below is closely related to those studied by Dubois
[DUB 01], Kumbaro [KUM 93] (see also [EYM 00]). It allows the compu-
tation of the boundary states using known values at the same time, so it is
naturally implicit. Applying this method for nonlinear boundary conditions
(BC in brief) at time tn+1 is not compatible with the framework of linearized
implicitation as above. We propose to apply it at time tn+1 after a first step
which consists in completing [14]-[15]-[16] with two linear equations thanks to
a modified procedure that we precise further. Solving the resulting system sup-
plies a first estimate of interior and unknown boundary states, then we make
use of the standard BC method. Following [DUB 01, EYM 00, KUM 93] we
start with given interior vector states Un

i (1 ≤ i ≤ N) and one component of
each boundary vector states Un

0 and Un
N+1 or any relationship between those

components. We have to build complete boundary states using these data at
the same time and not at the previous one as in the characteristic method. Let
us consider the upstream state for instance. The Roe matrix A = A(Un

0 , Un
1 )

has two eigenvalues λ̃1 < 0 < λ̃2 joined with two eigenvectors r̃1 et r̃2 (depend-
ing on the unknown part of Un

0 ). The vector states Un
0 and Un

1 are expressed
in the basis of eigenvectors: Un

1 = αn
1 r̃1 + αn

2 r̃2 and Un
0 = α1r̃1 + α2r̃2. The

BC method consists in setting α1 = αn
1 . Then we get Un

0 solving the a priori
nonlinear system {

α1 = αn
1

Boundary datum.
[17]

Our adaptation to the implicit scheme consists in two steps.
First step : we apply the previous procedure using the eigenvectors of the
Roe matrix A(Un

0 , Un
1 ) at time tn instead of time tn+1. From [17] we get:

Dn+1
0 = Dn+1

1 − (ũn
1/2 + c)(Mn+1

1 −Mn+1
0 ). Similarly for downstream state we

get: Mn+1
N+1 = Mn+1

N +
Dn+1

N −Dn+1
N+1

c− ũn
N+1/2

. The linear system arising from [14] is

now completely determined.
Second step : equipped with interior vector states issued from the first step
we apply the standard BC method at time tn+1. This leads to:

Dn+1
0 = Dn+1

1

Mn+1
0

Mn+1
1

+ c (Mn+1
0 −Mn+1

1 )

√
Mn+1

0

Mn+1
1

c (Mn+1
N+1 −Mn+1

N )
√

Mn+1
N+1M

n+1
N + Dn+1

N+1M
n+1
N −Dn+1

N Mn+1
N+1 = 0.

Commonly used boundary conditions are for instance an upstream constant
total load and the downstream flow (as in the presented numerical results).
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The total load in the duct is defined by H = z +
u2

2g
+p, where z is the altitude

(m), u the flow speed (m/s), p the relative pressure (m) defined by p =
ρ− ρ0

βρ2
0g

.

We impose at the entrance of the duct with altitude z0 a constant load H0.

Thus we get
(

Dn+1
0

Mn+1
0

)2

+
2Mn+1

0

βρ2
0A0

= n2g(H0 − z0) +
2

βρ0
as boundary datum

in [17]. A similar technique as above is then applied.

4. Numerical validation

We present now numerical results of a (severe) waterhammer test. The cir-
cular pipe of diameter 2 m and thickness 20 cm is 2000 m long. The altitude of
the upstream end of the pipe is 250 m and the angle is 5◦. The Young coeffi-
cient is 23. 109 Pa. The total upstream load is 300 m. The initial downstream
flow is 30 m3/s and we cut the flow in 10 seconds. The spatial mesh size is 20
m and the time step is 10−3 s. Figure 1 (left) represents the piezometric line
(z+p (m)) at the middle of the pipe considered as undeformable or deformable
whereas Figure 1 (right) represents the variation of the diameter. One can see
that in the deformable case, the pressure is less high since the pipe absorbs a
great part of the constraint. One can remark that the first order scheme is very
diffusive. To reduce the diffusive effect of the finite volume discretisation, we
performed a MUSCL like second order implicit scheme that we will present in a
forthcoming paper. Figure 2 represents the comparaison between the 1st order
and the second order scheme by plotting the piezometric line at the middle of
the undeformable pipe.
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Figure 1. Influence of deformation of the pipe: piezometric line (left) and di-
ameter (right) at the middle of the pipe (Solid line represents the undeformable
pipe, dashed line the deformable pipe).
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Figure 2. Comparaison of the first order and second order scheme: piezometric
line at the middle of the undeformable pipe (Solid line represents the second
order scheme, dashed line the first order scheme).


