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Abstract. Studies in mammalian hearts shown that left ventricular wall
thickening is an important mechanism for normal systolic ejection, and
that during contraction the myocardium develops a significant stress in
the muscular cross-fiber direction. We suggested that the collagen net-
work surrounding the muscular fibers could account for these two me-
chanical behaviors. To test this hypothesis, we developed a mathematical
model for a large deformation response of an active, incompressible, hy-
perelastic and transversely isotropic cardiac tissue, in which we included
a coupling effect between the connective tissue and the muscular fibers.
The three-dimensional constitutive law containing this internal pseudo-
active kinematic constraint is derived and applied to obtain solutions for
the cases of a free contraction, uniaxial and equibiaxial extensions of a
rectangular sample assuming negligible body forces and inertia effects.
This model may explain the contribution of the collagen network to the
two following mechanics: (i) the normal systolic wall thickening, and (ii)
the developed pseudo-active tension in the cross-fiber direction.

1 Introduction

It is known, that the transverse shear along myocardial cleavage planes provides
a mechanism for a normal systolic wall thickening [5]. Indirect evidences indicate
that the characteristics of the passive extracellular connective tissue in the my-
ocardium is an important determinant of ventricular function ([6], [10], [3]). An
appropriate constitutive law for the myocardium should therefore incorporate
the most important features of its microstructure. A sound theoretical formu-
lation for material laws of the active myocardium is essential for an accurate
mechanical analysis of the stresses in the ventricular wall during the whole car-
diac cycle. The wall stress distribution is one of the main factors governing the
myocardial energetic [11], the coronary blood flow [2], the cardiac hypertrophy
[10], and the fetal heart growth [7]. To date we do not have any reliable technique
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to evaluate the stress in the cardiac muscle, therefore, mechanical models are use-
ful in cardiology to assess the functional capacities of the human heart. Several
numerical models using a finite element (FE) analysis have been performed to
simulate the left ventricular performance ([4], [13]). The mechanical behavior of
the connective tissue is often assumed isotropic [8]. This last assumption is not
in agreement with the experimental results obtained on a sample of active my-
ocardial rabbit tissue. Lin and Yin [6] showed that, during an active equibiaxial
stretch test, there are significant stresses developed in the cross-fiber direction
(more than 40% of those in the fiber direction) that cannot be attributed to
nonparallel muscle fibers (MF).

Therefore, the purpose of this paper is to suggest a realistic pseudo-active
kinematic law coupling the passive connective tissue to the active MF, which may
explain the contribution of the collagen network to the two following mechanisms:
(i) the normal systolic wall thickening, and (ii) the developed pseudo-active ten-
sion in the cross-fiber direction. The three-dimensional constitutive law including
this coupling effect, and considering the myocardium as an incompressible hy-
perelastic material is presented. Futhermore, the proposed constitutive law for
living tissue was applied to simple cases as, free contraction, uniaxial and equib-
iaxial extensions of a rectangular sample assuming negligible body forces and
inertia effects.

2 Microstructure of the Cardiac Tissue

2.1 Muscle Fiber Organization

Anatomical observations have shown that the cardiac muscle tissue has a highly
specialized architecture [12]. This structure is composed primarily of cardiac
muscle cells, or myocytes that are 80 to 100 µm in length and are roughly cylin-
drical with cross-sectional dimensions of 10 to 20 µm. These cells are arranged in
a more or less parallel weave that we idealize as “muscle fibers” (MF). We shall
denote the local direction of this group of cells by the unit vector f and refer to it
also as the local “fiber” direction with the understanding that individual contin-
uous MF do not really exist. Experimental measurements have shown that the
MF direction field defines paths on a nested family or toroidal surfaces of revo-
lution in the wall of the heart [12]. These results show a continuously changing
orientation f of the MF through the wall, circumferential near the midwall and
progressively more inclined with respect to the equatorial plane when moving
toward either the epicardium or the endocardium.

2.2 The Cardiac Connective Tissue Organization

Myocytes and coronary blood vessels are embedded in a complex extracellular
matrix which consists of collagen and elastin, mainly. Caulfield and Janicki [1]
used the scanning electron microscope (SEM) to reveal the basic organization of
this connective tissue network. Their studies on the connective tissue of mam-
malian heart muscle give the description of the extracellular structures and their
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arrangement relative to cardiac muscle cells. They described the three following
classes of connective tissue organization: (i) interconnections between myocytes,
(ii) connections between myocytes and capillaries and, (iii) a collagen weave sur-
rounding group of myocytes. When viewed by SEM, groups of myocytes can be
seen to be encompassed by a rather prominent meshwork of fibrillard collagen,
and short collagen struts attach the myocytes subjacent to this meshwork to it.

3 Constitutive Law in Continuum Mechanics

3.1 Coupling between Muscle Fibers and Collagen Network

Extrapolations from the MF arrangement to the myocardial stress are realistic
if we take into account the effect of the connective tissue. Based on the previ-
ous SEM observations, we proposed a connective tissue organization illustrated
in Fig. 1. We assume that the MF are roughly cylindrical, and that two adja-
cent MF running on the tangential plane of the ventricular wall are surrounded
by inextensible collagen bundles. So, during the contraction, the MF diameter
increases and because the collagen bundles are inextensible, the adjacent MF
become closer. Thus, the pseudo-active kinematic relationship between the ex-
tension ratios in the fiber and cross-fiber directions (noted λf and λcf=D’/D,
respectively (see Fig.1) is given by h(λf , λcf ) = 0 with:

h(λf , λcf ) = 1 − λcf + (π − 2)(1 − λ
−1/2
f )

a

D
(1)
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Fig. 1. Schematic illustrations of the sample of myocardium and the internal pseudo-
active kinematic constraint induced by the collagen network surrounding the muscle
fibers. A) Before contraction (or passive state). B) After or during contraction (or
active state)
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Fig. 2. Free contraction test with β(t) = sin2(πt): effect of the pseudo-active kinematic
constraint. The empty and full symbols indicate that the coupling effect is acting or
not, respectively. The fiber and cross-fiber directions are noted (f), (cf) and (cf ’) and
are defined in Fig. 1. Arrows show the curve modification when the pseudo-active
kinematic constraint behaves

where D = 4a + d in which a is the initial MF radius and d is the distance
between the two adjacent MF.

3.2 Myocardium under Internal Pseudo-Active Kinematic
Constraint

To be consistent with our mathematical formulation, the letter Φ is used for
the non elastic gradient tensor and the letter F is used for the elastic gradient
tensor. The activation of the MF changes the properties of the material and at the
same time contracts the muscle itself. To have a continuous elastic description
during the activation of the tissue, we used an approach similar to the one
proposed by Taber [9], Lin and Yin [6]. From its passive state with zero residual
stress P , the free activation of the muscle fibers is modelised by the following
two transformations (Fig. 3): the first one (from state P to virtual state A0)
changes the material properties without changing the geometry, and the second
one (from A0 to A) contracts the muscle without changing the properties of
the material. Thus, the former is not an elastic deformation and is described
by the gradient tensor ΦPA0 = I where I is the identity matrix. In that first
transformation, only the strain energy function is modified using an activation
function β(t), where t is the cardiac cycle time. The second transformation is an
elastic deformation caused only by the active tension delivered by the fibers, and
takes care of the internal kinematic constraint (Eq.(1)). This last transformation
is described by the gradient tensor FA0A. Thus the transformation from state
P to state A is a non elastic transformation (ΦPA = ΦPA0FA0A), but can be
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Fig. 3. Description of the active rheology in continuum mechanics (see text for more
details)

treated mathematically as an elastic one because ΦPA = FA0A. Finally, external
loads are applied to state A deforming the body through into C (Fig. 3). The
change of the material properties of the myocardium during the cardiac cycle is
described by a time-dependent strain-energy function per unit volume of state
P noted W (EPH , t):

W (EPH) = − 1
2 pH(I3(EPH) − 1) + W ∗(EPH) + δAH Wpseudo

active
(EPH) (2)

with W ∗(EPH) = Wpas(EPH) + β(t) Wact(EPH) (3)

where EPH is the Green’s strain tensor at an arbitrary state H calculated from
the zero-stress state P (the state H could be one of the states A0, A or C shown
in Fig. 3), pH is the Lagrangian multiplier resulting of the incompressibility
condition I3(EPH) = detCPH = 1, where CPH is the right Cauchy-Green strain
tensor (CPH = 2EPH + I), Wpas represents the contribution of the surrounding
collagen matrix and of the passive fiber components, Wact arises from the change
of rheology during muscular contraction, and β(t) is an activation function equal
to zero at end-diastolic state and equal to one at end-systolic state (0 ≤ β(t) ≤
1). The scalar δAH is equal to one if state H is the state A and zero if the two
states H and A are distinct. The pseudo-active strain energy function expressed
in the last term of the right hand side of the Eq.(2) is introduced in order to
satisfy the kinematic condition (Eq.(1)), and is given by:

Wpseudo

active
(EPH) = −1

2
qH h(EPH) (4)

The scalar qH introduced in Eq.(4) is an additional indeterminate Lagrange
multiplier. The function h(EPH) defined in Eq.(1), may be rewritten in terms
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of the strain invariants as:

h(EPH) = 1 − I
1/2
6 + (π − 2) (1 − I

−1/4
4 )

a

D
(5)

where I4 and I6 are two strain invariants given by I4(EPH) = fP · CPH · fP
and I6(EPH) = f⊥

P · CPH · f⊥
P in which the fiber and the perpendicular fiber

directions are respectively characterized in state P by the unit vectors fP and
f⊥
P . In an arbitrary deformed state H, the direction of these two unit vectors are

noted fH and f ′
H and are respectively defined by fH = ΦPH ·fP / ‖ ΦPH ·fP ‖ and

f ′
H = ΦPH ·f⊥

P / ‖ ΦPH ·f⊥
P ‖. The superscript ‘T ’ is used for transpose matrix and

‖ ‖ stands for the euclidian norm. Note that I4 and I6 are directly related to the
fiber and cross-fiber extension ratios (I4 = λ2

f and I6 = λ2
cf ). In our notations, λf

is related to the fiber direction fH , and λcf to the cross-fiber direction f ′
H (Fig. 1).

We treat the myocardium as a homogeneous, incompressible, and hyperelastic
material transversely isotropic with respect to the local MF direction. In this
study, the passive strain-energy function is [6]

Wpas(EPH) = Cp
1 (eQ − 1) (6)

with Q = Cp
2 (I1 − 3)2 + Cp

3 (I1 − 3)(I4 − 1) + Cp
4 (I4 − 1)2 (7)

For the active strain-energy we modified the function found by Lin and Yin [6]
by substracting the “beating term”:

Wact(EPH) = Ca
1 (I1 − 3)(I4 − 1) + Ca

2 (I1 − 3)2 + Ca
3 (I4 − 1)2 + Ca

4 (I1 − 3)
(8)

where (Cp
i , i = 1, · · · , 4) and (Ca

i , i = 1, · · · 4) are material constants and I1
is the first principal strain invariant given by I1(EPH) = tr CPH . The beating
term is defined as the part of the active strain-energy function responsible for
the change of geometry when the muscle is activated and submited to no exter-
nal loading. To incorporate the beating behavior, the time-dependant beating
tension β(t) T (0) was applied in the deformed fiber direction.

In our approach, the active loaded state C of the myocardial tissue is obtained
in two steps. In the first step, and at a given degree of activation β, we derived
and quantified the internal pseudo-active stresses by looking the free contraction
configuration of the tissue (state A, Fig. 3). Then, in a second step, we applied
the external loads on the active myocardial tissue under the internal pseudo-
active stresses previously found.

Step 1: Determination of the Free Contraction State A
During the cardiac cycle and at a given degree of activation β, the Cauchy stress
tensor in state A (noted τA) is given by:

τA = −pAI + ΦPA
∂W ∗ (EPA)

∂EPA
ΦT

PA + β(t)T (0)fA ⊗ fA + τ
pseudo

active
A (9)
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with τ
pseudo

active
A = ΦPA

∂Wpseudo

active
(EPA)

∂EPA
ΦT

PA (10)

where the symbol ⊗ denotes the tensor product. The postulated mechanical
coupling law (Eq.(5)) induces, during the contraction, a pseudo-active stress
tensor:

τ
pseudo

active
A = T f

A fA ⊗ fA + T cf
A f ′

A ⊗ f ′
A (11)

These two stress tensor components T f
A and T cf

A are activation-dependent and
behave as some internal tensions in the fiber and cross-fiber directions of unit
vectors fA and f ′

A, respectively. These pseudo-active tensions are defined by:

T f
A = 2

∂Wpseudo

active

∂I4
‖ ΦPA · fP ‖2 ; T cf

A = 2
∂Wpseudo

active

∂I6
‖ ΦPA · f⊥

P ‖2 (12)

Step 2: Determination of the Physiological Active Loaded State C
These previously found internal pseudo-active tensions T f

A and T cf
A were intro-

duced in the expression of the stress tensor at loaded state C. Therefore, at a
fixed time (or activation β) of the cardiac cycle, the Cauchy stress tensor in the
physiological state C (noted τC) is given by:

τC = −pCI + ΦPC
∂W ∗ (EPC)

∂EPC
ΦT

PC +
(
βT (0) + T f

A

)
fC ⊗ fC + T cf

A f ′
C ⊗ f ′

C

(13)

The suggested constitutive law for the active myocardium (Eqs.(2)-(13)) allows
to simulate the left ventricle behavior during the whole cardiac cycle. Thus, in
this law: (i) the anisotropic behavior is incorporated in the expressions of passive,
active and pseudo-active strain energy functions by the terms I4 and I6, (ii) the
kinematic contraction is accounted for by a beating tension β T (0) in the fiber
direction, (iii) the change of properties is expressed by the active strain energy
term β(t) Wact, and (iv) the coupling effect between the collagen network and
the MF is accounted for by the two internal pseudo-active tensions T f

A and T cf
A

in the fiber and cross fiber directions fC and f ′
C , respectively.

4 Results and Discussion

We simulated the loading of a thin sample of living myocardium (1.0 × 1.0 ×
0.1 cm3) in which the MF are uniformly oriented in one direction. The coefficients
involved in the strain energy-function are those of Lin and Yin [6]: Cp

1=0.292 kPa,
Cp

2=0.321, Cp
3=-0.260, Cp

4=0.201, Ca
1 =-3.870 kPa, Ca

2 =4.830 kPa, Ca
3 =2.512

kPa and Ca
4 =0.951 kPa. For the beating tension, a good agreement between

the previous experimental results and our theoretical solution is obtained for
T (0)=0.6 kPa. Nevertheless, the control simulation was performed with a/D=0.2
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and T (0)=35 kPa. This higher value of T (0) is more adapted to the description
of the left ventricular performance [7].

Influence of the Collagen Network on the Systolic Wall Thickening
The free contraction test is performed with no external displacement or force on
the boundaries of the sample, but just in activating the tissue. In this simulation
we used the following time-dependent activation function : β(t) = sin2(πt).
Compare to the case where the kinematic constraint is not taken into account,
one can see an increase of the cross-fiber extension ratio which is in the tangential
plane of the ventricular wall (Fig. 3). At the end-systolic state (i.e. when β = 1),
this ratio goes from the value 1.25 if we neglect the coupling effect, to 1.45 when
considering the kinematic constraint induced by the collagen. So, the connective
tissue could account for 16 % of normal end-systolic wall thickness. This increase
is clearly dependent of the geometrical parameter ratio a/D and the maximal
beating tension T (0).

Influence of the Collagen Network on the Pseudo-active Tension
Table 1 shows the effect of the geometrical parameter a/D and the maximal
active tension T (0), on the fiber and cross-fiber stresses (noted σ11 and σ22,
respectively). These effects were given in the case of an equibiaxial extension
loading (λf = λcf = 1.2) of an activated sample of myocardium (β = 1). These
two stresses increase with T (0), but are not very sensitive to the geometrical
ratio a/D. We can observe also, that by neglecting the interaction between the
collagen network and the MF: (i) the cross-fiber stress is not affected by the
amplitude of the beating tension, and (ii) the stress ratio σ22/σ11 decreases
when T (0) increases. These results mean that the usual strain-energy functions
considered for the myocardium are not able to generate any transverse pseudo-
active tension.

Moreover, the results obtained for the uniaxial tests of an active or a passive
sample, with or without the effect of the collagen on the MF, are shown in
Fig. 4. Because the coupling effect between the collagen and the MF is an active
mechanism, the passive stress-strain relations are not affected by the kinematic
constraint. The mechanical properties of the active tissue, in the fiber and cross-
fiber directions, become comparable when the coupling effect acts.

5 Conclusion

This study shows that the connective tissue skeleton in the normal and patho-
logical left ventricle may have a large influence on the cardiac performance. A
new constitutive law has been developed for large deformations of an incom-
pressible hyperelastic, and anisotropic living myocardium. This work is based
on the idea that the connective tissue is physically coupled to the muscle fibers
which seems reasonable with regard to the available observations. Nevertheless,
additional experimental works must be done in order to support this assump-
tion and to study thoroughly the spatial organization of the myocardial collagen
fibrils under normal and pathological conditions.
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Table 1. Equibiaxial test: effect of active tension T (0) and geometrical parameter a/D

a/D ������������
T0 (kPa)

5 15 25 35 45

σ22/σ11 (%) 50.92 53.73 57.65 60.25 61.90

0.10

σ22 (kPa) 5.94 11.44 17.78 24.32 30.88

σ22/σ11 (%) 51.44 54.56 58.60 61.30 63.01

0.15

σ22 (kPa) 5.97 11.48 17.80 24.31 30.84

σ22/σ11 (%) 51.94 55.33 59.47 62.25 64.04

0.20

σ22 (kPa) 6.00 11.51 17.79 24.25 30.73

σ22/σ11 (%) 36.78 19.88 13.62 10.36 8.36

No kinematic constraint

σ22 (kPa) 4.32 4.32 4.32 4.32 4.32
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