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Abstract In this paper, we introduce a new reformulation of the Green-Naghdi
model in the Camassa-Holm regime for the propagation of internal waves over a flat
topography to improve the frequency dispersion of the original model. We develop
a second order splitting scheme where the hyperbolic part of the system is treated
with a high-order finite volume scheme and the dispersive part is treated with a fi-
nite difference approach. Numerical simulations are then performed to validate the
model.

1 Introduction

This study deals with the propagation of internal waves in the uni-dimensional set-
ting located at the interface between two layers of fluids of different densities. The
fluids are assumed to be incompressible, homogeneous, and immiscible, limited
from above by a rigid lid and from below by a flat bottom. This type of fluid dy-
namics problem is encountered by researchers in oceanography when they study the
wave near the shore. Because of the difference in the salinity of the different layers
of water near the shore, it is useful to model the flow of salted water by a two layers
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incompressible fluids flow. The usual way of describing such a flow is to use the 3D-
Euler equations for the different layers adding some thermodynamic and dynamic
conditions at the interface. This system will be called the full Euler system.

Fig. 1 Domain of study and governing equations.

We introduce dimensionless variables and the two scale parameters µ , the shal-

lowness parameter and ε , the nonlinearity parameter, defined by: µ =
d2

1
λ 2 , ε = a

d1
where a is a typical length of the vertical oscillation of the interface, λ is a typ-
ical wavelength. We also define the dimensionless parameters γ = ρ1

ρ2
and δ = d1

d2
representing respectively the ratio between the densities and the depth of the two
layers.

In this work, we present a splitting technique for the numerical resolution of the
GN model in the Camassa-Holm (or medium amplitude internal waves) regime, ε =
O(

√µ), obtained and fully justified by Duchêne, Israwi and Talhouk in [4]. In the
Camassa-Holm regime, the authors has proved the existence and well-posedeness
of the resulting system and its consistecy with the full Euler system in the sense
that its solution remain close to the exact solution of the full Euler system with
corresponding initial data up to the order O(µ2).

This model is first recast under a new formulation more suitable for numerical
resolution with the same order of precision as the standard one but with improved
frequency dispersion. For this sake, we introduce a one parameter family depend-
ing on α > 0. The choice of the parameter α is motivated by the exact agreement
between the phase velocity dispersion relation of the full Euler system and the im-
proved Green-Naghdi system (1) for fixed values for γ and δ and for large wavenum-
bers (k around 4-5). This parameter is denoted αopt and is obtained by an algebraic
equation, see [2] for details.
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We obtain the Green-Naghdi model in the Camassa-Holm with improved disper-
sion whose unknowns are ζ the mean elevation of the interface and v the shear mean
velocity :




∂tζ +∂x
(

f (εζ )v
)
= 0,

(I +µναT [0])
[
∂tv+ εςv∂xv+

α −1
α

(
(γ +δ )∂xζ + ε∂x(q3(εζ )v2)

)]

+
1
α
(
(γ +δ )∂xζ + ε∂x(q3(εζ )v2)

)
+µεQ1(v)+µενQ2(ζ )+µενQ3(ζ ) = 0.

(1)
with f (X)= (1−X)(δ−1+X)

1−X+γ(δ−1+X)
, T [0]V =−∂ 2

x V , S[ζ ]V =−κ2∂x(ζ ∂xV ) ,q3(εζ )= 1
2

(
f ′(εζ )− ς

)
,

Q1(v) = κ∂x((∂xv)2) , Q2(ζ ) =−S[ζ ](I +µναT [0])−1
(
(γ +δ )∂xζ

)
,

Q3(ζ ) = κ1ζ T [0](I +µναT [0])−1[(γ +δ )∂xζ ] .

2 Numerical methods

As pointed out by many authors [1, 8] the improved dispersion Green-Naghdi equa-
tions (1) is well-adapted to the implementation of a splitting scheme separating the
hyperbolic and the dispersive parts of the equations.

2.1 The splitting method

We decompose the solution operator S(.) associated to (1) at each time step ∆ t by
the following second order operator splitting:

S(∆ t) = S1(∆ t/2)S2(∆ t)S1(∆ t/2)

where S1(.) is the solution operator associated to the conservative part, and S2(.) the
solution operator associated to the dispersive part of the equations (1). In this study,
S1 is computed using a finite volume method while S2 is computed using a classical
finite-difference method.

• S1(t) is the solution operator associated to the conservative part namely the
nonlinear shallow water equations, NSWE:





∂tζ +∂x
(

f (εζ )v
)
= 0,

∂tv+∂x

(ε f ′(εζ )
2

v2 +(γ +δ )ζ
)
= 0.

(2)

Under the hyperbolicity condition for the shallow water system provided in [6], this
system is strictly hyperbolic.
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4 Christian Bourdarias, Stéphane Gerbi and Ralph Lteif

• S2(t) is the solution operator associated to the remaining (dispersive) part of
the equations.





∂tζ = 0,

(I +µναT [0])
[
∂tv−

1
α
(
(γ +δ )∂xζ + ε∂x(q3(εζ )v2)

)]

+
1
α
(
(γ +δ )∂xζ + ε∂x(q3(εζ )v2)

)
+µεQ1(v)+µενQ2(ζ )+µενQ3(ζ ) = 0.

(3)

2.2 Finite volume scheme

In what follows, we consider the numerical approximation of the hyperbolic system
of conservation laws (2). We have constructed three finite volume schemes: first
order, second order “MUSCL” type method and finally 5th order WENO method
and tested their accuracy by using the exact (up to the order O(µ2)) solitary wave
solutions of the one layer Green-Naghdi equations over a flat bottom (see [8]). We
do not present the results in this paper but the 5th order method is clearly much more
accurate. However we do not obtain the predicted order with respect with the spatial
mesh size. This might be due to the fact that the given analytic solution satisfies the
model up to an O(µ2) remainder. We believe that this splitting strategy may be also
applied in the variable bottom case. This is the subject of a future work.

2.2.1 Higher order finite-volume scheme: WENO5-RK4

To reach higher order accuracy in smooth regions and a good resolution around
discontinuities, we implement fifth-order accuracy WENO reconstruction, follow-
ing [7]. To automatically achieve high order accuracy and non-oscillatory property
near discontinuities, WENO schemes use the idea of adaptive stencils in the recon-
struction procedure based on the local smoothness of the numerical solution.

As far as time discretization is concerned, we use the fourth-order explicit
RungeKutta “RK4” method.

2.3 Finite difference scheme for the dispersive part

The finite volume-finite difference mix imply to switch between the cell-averaged
and nodal values for each unknown and at each time step. To this end, we use the
fifth-order accuracy WENO reconstruction, that allows to approximate the nodal
values (i.e finite difference unknowns) (Un

i )i=1,N+1 in terms of the cell-averaged
values (i.e finite volume unknowns) (Un

i )i=1,N .
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The finite difference discretization of the system (3) leads to the following dis-
crete problem:




ζ n+1 −ζ n

∆ t
= 0,

vn+1 − vn

∆ t
− 1

α
(γ +δ )D1(ζ n)−2

ε
α

q3(εζ n)vnD1(vn)− ε2

α
q′3(εζ n)D1(ζ n)(vn)(vn)

+(I −µναD2)
−1
[ 1

α
(γ +δ )D1(ζ n)+2

ε
α

q3(εζ n)vnD1(vn)+
ε2

α
q′3(εζ n)D1(ζ n)(vn)(vn)

+µεQ1(vn)+µνεQ2(ζ n)+µενQ3(ζ n)
]
= 0,

(4)
with

Q1(vn) = 2κD1(vn)D2(vn),

Q2(ζ n) = κ2D1

[
ζ nD1

(
(I −µναD2)

−1(γ +δ )D1(ζ n)
)]

,

Q3(ζ n) =−κ1ζ nD2

[
(I −µναD2)

−1(γ +δ )D1(ζ n)
]
.

The system (4) is solved at each time step using a classical finite-difference tech-
nique, where the matrices D1 and D2 are the classical centered discretizations of the
derivatives ∂x and ∂ 2

x given below:

(∂xU)i =
1

12∆x
(−Ui+2 +8Ui+1 −8Ui−1 +Ui−2),

(∂ 2
x U)i =

1
12∆x2 (−Ui+2 +16Ui+1 −30Ui +16Ui−1 −Ui−2).

For time discretization, the fourth-order formula “DF4” is associated to a fourth-
order classical Runge-Kutta “RK4” scheme, and thus one obtains the “DF4-RK4”
scheme.

We only treat either periodic boundary conditions or reflective boundary condi-
tions for the hyperbolic and dispersive parts of the splitting scheme. Suitable rela-
tions are imposed on both cell-averaged and nodal quantities.

3 Numerical validations : Kelvin-Helmholtz instabilities

In this section, we present a numerical experiment to validate the numerical effi-
ciency and accuracy of the improved Green-Naghdi model (1). We use the WENO5
reconstruction for the hyperbolic part of the splitting scheme and a fourth order finite
difference scheme “DF4” for the dispersive part, both associated to a fourth-order
classical Runge-Kutta “RK4” time scheme called “WENO5-DF4-RK4”. We would
like to highlight the importance of the choice of the parameter α in order to improve
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the frequency dispersion of the model (1), through the simulation of a sufficiently
regular initial wave, following the numerical experiments performed in [5]. In the
aforementioned paper they introduce a new class of Green-Naghdi type models for
the propagation of internal waves with improved frequency dispersion in order to
prevent high-frequency Kelvin-Helmholtz instabilities. These models are obtained
by regularizing the original Green-Naghdi one by slightly modifying the disper-
sion components using a class of Fourier multipliers. They represent three different
choices of the Fourier multipliers, each one yields to a specific Green-Naghi model
which they denote as follows: “original” as the classical Green-Naghi model in-
troduced in [3], “regularized” which is a well-posed system for sufficiently small
and regular data, even in absence of surface tension, “improved” whose dispersion
relation is the same as the one of the full Euler system. In order to compare with
the numerical experiments done in [5], we choose the initial data ζ (0,x) =−e−4|x|2

and v(0,x) = 0 (represented by the dashed lines). The computational domain is the
interval x ∈ (−4,4) discretized with 512 cells using periodic boundary conditions.

The dimensionless parameters are set as follows: µ = 0.1, ε = 0.5, δ = 0.5,
γ = 0.95. With thess values and choosing the wavenumber k = 5, we obtain
αopt = 1.271.

Figures 2 and 3 show the comparisons between our numerical solution for α = 1
(left) and αopt = 1.271 (right) and the Green-Naghdi models solutions obtained
in [5], with a small amount of surface tension, at time t = 2 and t = 3 respectively.
We observe an excellent agreement between our numerical solution computed for
αopt = 1.271 and both “improved” and “regularized” models at t = 2 and t = 3.
As expected, at t = 3 the original model induces Kelvin-Helmholtz instabilities.
Meanwhile, the flows predicted by the regularized and improved models and by
our model (1) with αopt = 1.271 remain smooth and are very similar. Similarly,
Figure 4 shows an excellent agreement between the numerical solutions computed
for αopt = 1.271 with the “improved” and “regularized” models, without surface
tension at time t = 2, while the flow of the original model is completely destroyed
due to Kelvin-Helmholtz instabilities.

The overall observations show the importance of the choice of the parameter α
in improving the frequency dispersion. Indeed, when choosing αopt = 1.271, we
observe an excellent matching between our numerical solutions and those obtained
by the “improved” model before the latter is completely destroyed in absence of
surface tension due to the Kelvin-Helmholtz instabilities. As well, our numerical
solution matches the one computed by the “regularized” model even for a large time
and with or without surface tension. This is not the case when choosing α = 1. In
fact, the “improved” model has exactly the same dispersion relation as the one of the
full Euler system and for all wave numbers (see [5, Section 3] for more details) and
the dispersion relation of the “regularized” model fit the one of the full Euler system
to an O(µ3) order. This explains the reason behind the matching when choosing
an optimal value for α and highlight the advantage of the proposed approach in
improving the frequency dispersion.
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Fig. 2 Comparison with the Green-Naghdi models, with surface tension, at time t = 2, for α = 1
(left) and αopt = 1.271 (right)

Fig. 3 Comparison with the Green-Naghdi models, with surface tension, at time t = 3, for α = 1
(left) and αopt = 1.271 (right)
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Fig. 4 Comparison with the Green-Naghdi models, without surface tension (bo−1 = 0), at time
t = 2, for α = 1 (left) and αopt = 1.271 (right)
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